Bài 7: Lũy thừa với số mũ tự nhiên. Nhân hai lũy thừa cùng cơ số. Luyện tập

PV

a/ Chứng minh rằng : ( 5121 - 3515 ) chia hết cho 10

b/ So sánh ( 13 - 12 )2015 và 517 . 514 : 531

c/ 9 + 5x = 47 : 43 - 34

PH
23 tháng 9 2017 lúc 11:16

a) Xét:

5121 có chữ số tận cùng là 5. Đặt 5121 = \(\overline{A5}\)

3515 có chữ số tận cùng là 5. Đặt 3515 = \(\overline{B5}\)

Do đó \(5^{121}-35^{15}=\overline{A5}-\overline{B5}=\overline{C0}⋮10\left(đpcm\right)\)

b) Ta có:

\(\left(13-12\right)^{2015}=1^{2015}=1\)

\(5^{17}.5^{14}:5^{31}=5^0=1\)

Vậy \(\left(13-12\right)^{2015}=5^{17}.5^{14}:5^{31}\)

c) \(9+5x=4^7:4^3-3^4\)

\(\Leftrightarrow9+5x=4^4-3^4\)

\(\Leftrightarrow9+5x=256-81\)

\(\Leftrightarrow9+5x=175\)

\(\Leftrightarrow5x=175-9=166\)

\(\Rightarrow x=166:5=33\dfrac{1}{5}\)

Bình luận (0)

Các câu hỏi tương tự
LG
Xem chi tiết
DB
Xem chi tiết
TA
Xem chi tiết
NV
Xem chi tiết
TA
Xem chi tiết
TA
Xem chi tiết
NC
Xem chi tiết
LH
Xem chi tiết
LH
Xem chi tiết