Violympic toán 8

XX

a) Cho các số a, b, c thỏa mãn:a + b + c = 3/2. Chứng minh rằng: a^2 + b^2 + c^2 ≥ 3/4.

b) Tìm giá trị nhỏ nhất của biểu thức P = x^2 + 2y^2 + 2xy – 6x – 8y + 2028?

ND
23 tháng 5 2018 lúc 21:47

a)

Áp dụng BĐT Bunhiacopxki ta có:

\(\left(a+b+c\right)^2\le\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)\)

\(\Rightarrow\left(a^2+b^2+c^2\right).3\ge\left(\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)

\(\Rightarrow a^2+b^2+c^2\ge\dfrac{3}{4}\)

Bình luận (0)
AT
23 tháng 5 2018 lúc 21:40

a/ chtt

b/ \(P=x^2+2y^2+2xy-6x-8y+2028\)

\(=\left(x^2+2xy+y^2\right)-6\left(x+y\right)+9+\left(y^2-2y+1\right)+2018\)

\(=\left(x+y\right)^2-6\left(x+y\right)+9+\left(y-1\right)^2+2018\)

\(=\left(x+y-3\right)^2+\left(y-1\right)^2+2018\ge2018\)

Dấu = xảy ra khi \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Vậy....

Bình luận (3)

Các câu hỏi tương tự
H24
Xem chi tiết
XX
Xem chi tiết
TV
Xem chi tiết
BB
Xem chi tiết
LV
Xem chi tiết
BB
Xem chi tiết
LD
Xem chi tiết
MS
Xem chi tiết
MS
Xem chi tiết