\(4x^2-3\left|x\right|-1=0\)
\(\left[{}\begin{matrix}4x^2-3x=1\\4x^2+3x=1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-\frac{1}{4}\\x=1\end{matrix}\right.\)
Xét \(x\ge0\)ta có
\(4x^2-3x-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=\frac{-1}{4}\left(ktm\right)\end{matrix}\right.\)
Xét x<0 ta có
\(4x^2+3x-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{4}\left(KTM\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
Vậy \(x\in\left\{1,-1\right\}\)