Bài 2: Hoán vị, chỉnh hợp, tổ hợp

TL

3. Từ các chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiều số trong các trường hợp sau: a) Có 6 chữ số khác nhau. b) Số chẵn có 4 chữ số khác nhau c) Số 3 chữ số trong do chữ số đứng sau nhỏ hơn chữ số đảng trước. d) Số có 3 chữ số khác nhau lớn hơn 300. e) Số có 7 chữ số, trong đó chủ số 1 xuất hiện 2 lần, các chữ số khác xuất hiện 1 lần.

PN
17 tháng 2 2022 lúc 22:34

Giải

a, Có 6 chữ số khác nhau

Gọi số cần tìm là \(\overline{abcdef}\)

a có 5 cách chọn ( \(a\ne0\))

\(\overline{bcedf}\)có 5! cách chọn 

=> Có tất cả 5.5! = 600 (số)

Vậy có 600 số có 6 chữ số khác nhau

b, Gọi số có 4 chữ số cần tìm là \(\overline{abcd}\)

Vì \(\overline{abcd}\) là số chẵn nên d \(\in\left(0,2,4\right)\)

TH1: d=0

\(\overline{abc}\) có \(A_5^3\) cách chọn => 60 cách chọn

TH2 : d=(2,4) -> có 2 cách chọn 

a có 4 cách chọn ( a khác 0,d)

b có 4 cách chọn ( b khác a,d)

c có 3 cách chọn ( c khác a,b,d)

=> 4.4.3.2=96 số

Nên kết hợp hai trường hợp ta có 60+96=156 ( số)

Vậy có 156 số có 4 chữ số chẵn khác nhau

Bình luận (0)
PN
17 tháng 2 2022 lúc 22:43

c, Gọi số có 3 chữ số khác nhau là \(\overline{abc}\)

TH1:

 a = {4,5} -> có 2 cách

\(\overline{bc}\) có \(A_4^2\) cách chọn

=> Có 2.\(A_4^2\)=2.12=24 số

TH2: a=3 -> có 1 cách 

b={1,2,4,5} -> có 4 cách

c có 4 cách ( c khác a,b)

=> 4.4=16 (số)

TH3: a=3 -> có 1 cách chọn

b=0-> có 1 cách chọn

c={1,2,4,5} -> có 4 cách chọn

=> có 4 số

Nên ta có 24+16+4=44( số)

Vậy có tất cả 44 số có 3 chữ số khác nhau lớn hơn 300

 

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
NP
Xem chi tiết
NH
Xem chi tiết
CP
Xem chi tiết
TT
Xem chi tiết
HN
Xem chi tiết
LL
Xem chi tiết
LN
Xem chi tiết
DV
Xem chi tiết