Cho S=\(\dfrac{1}{5^2}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+\dfrac{4}{5^4}+...+\dfrac{2017}{5^{2017}}+\dfrac{2018}{5^{2018}}\).Chứng minh S<\(\dfrac{1}{3}\)
Cho A=\(\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+....+\dfrac{10}{5^{10}}+\dfrac{11}{5^{11}}\). Chứng minh A<\(\dfrac{5}{16}\)
a) Chứng minh rằng nếu 2(x+y) = 5(y+z) = 3(z+x)
Thì \(\dfrac{x-y}{4}=\dfrac{y-z}{5}\)
b) Cho \(x^2=yz\) . Chứng minh rằng \(\dfrac{x^2+y^2}{y^2+z^2}=\dfrac{x}{z}\)
Cho \(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)
Chứng minh A < 2
Cho \(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)
Chứng minh A < 2
bài 1: tính A:=\(\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}+\frac{5}{6}-\frac{6}{7}-\frac{5}{6}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{2}{3}-\frac{1}{2}\)
Bài 2: Cho B=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+.....+\frac{1}{49}-\frac{1}{50}\)
Chứng minh rằng: \(\frac{7}{12}< A< \frac{5}{6}\)
1. Tính :
\(\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)
2. Tìm x, biết :
\(5^x+5^{x+2}=650\)
3. Chứng minh:
\(5^5-5^4+5^3\)chia hết cho 7
Chứng minh rằng :
\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}< 1\)