Chương I - Hệ thức lượng trong tam giác vuông

KA

2. Tam giác ABC vuông tại A, đường cao AH. Biết AB = 15 cm, AC = 20cm a) Tính chu vi tam giác AHC b) Kẻ HM  AB ( M  AB ) HN  AC ( N  AC ). Tính MN c) Tính chu vi tứ giác AMHN 

H24
27 tháng 6 2021 lúc 15:25

a) Ta có \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

=>AH=12cm

Adung định lý Pytago trong tam giác AHC vuông tại H ta có 

\(HC=\sqrt{AC^2-AH^2}\)

=>HC=16cm

Chu vi tam giác AHC = AH+AC+HC=12+20+16=48cm

b)Xét tứ giác AMHN ta có 

góc MAN=góc AMH =góc HNA=90 độ

=>tứ giác AMHN là hcn

=>AH=MN=12cm

c)xét tam giác AHC vuông tại H ta có:

\(\dfrac{1}{HN^2}=\dfrac{1}{AH^2}+\dfrac{1}{HC^2}\)

=>HN=9,6cm

Xét tam giác MHN vuông tại H ta có : MH=\(\sqrt{MN^2-HN^2}=7,2cm\)

Vậy chu vi tứ giác AMHN=(HN+MH).2=33,6cm

Bình luận (0)
NT
27 tháng 6 2021 lúc 19:29

Bài 2:

a) Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=15^2+20^2=625\)

hay BC=25(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}CH\cdot BC=AC^2\\\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}CH=\dfrac{20^2}{25}=\dfrac{400}{25}=16\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

Chu vi tam giác AHC là:

\(C_{AHC}=AH+HC+AC=12+16+20=48\left(cm\right)\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
QE
Xem chi tiết
H24
Xem chi tiết
TP
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
CC
Xem chi tiết
CC
Xem chi tiết
NN
Xem chi tiết