Bài 5: Phương trình mũ và phương trình lôgarit

DP

1,Tìm m để phương trình \(9^x-6.3^x+5=m\) có đúng 1 nghiệm x\(\in\left[0;\infty\right]\)

2,Tìm m để bất phương trình \(4^x-2^x-m\ge0\) nghiệm đúng \(\forall x\in\left(0;1\right)\)

3,Tìm m để bất phương trình \(4^x-2^{^{ }x+2}-m\le0\) nghiệm đúng \(\forall x\in\left(-1;2\right)\)

AH
25 tháng 11 2017 lúc 1:00

Câu 1:

Đặt \(3^x=t(t>0)\)

PT trở thành:

\(t^2-6.t+5=m\)

\(\Leftrightarrow t^2-6t+(5-m)=0\)

Để PT có đúng một nghiệm thì \(\Delta'=9-(5-m)=0\)

\(\Leftrightarrow m=-4\)

Thử lại \(9^x-6.3^x+9=0\Leftrightarrow 3^x=3\Leftrightarrow x=1\in [0;+\infty )\) (đúng)

Vậy \(m=-4\)

Bình luận (0)
AH
25 tháng 11 2017 lúc 1:09

Câu 2:

\(4^x-2^x-m\geq 0\Leftrightarrow (2^x)^2-2^x-m\geq 0\)

Đặt \(2^x=t\Rightarrow t^2-t-m\geq 0\) với mọi \(t\in (1; 2)\)

\(\Leftrightarrow m\leq t^2-t\Leftrightarrow m\leq \min (t^2-t)\)

Xét hàm \(f(t)=t^2-t\Rightarrow f'(t)=2t-1>0\forall t\in (1;2)\)

\(\Rightarrow f(t)> f(1)=0\) với mọi \(t\in (1;2)\)

Do đó \(m\leq 0\)

Bình luận (0)
AH
25 tháng 11 2017 lúc 1:24

Câu 3:

Đặt \(2^x=t\Rightarrow t\in \left(\frac{1}{2}; 4\right)\)

BPT \(\Leftrightarrow t^2-4t-m\leq 0\Leftrightarrow m\geq t^2-4t\)

Để HPT luôn đúng với x thuộc khoảng xác định thì \(m\geq \max (t^2-4t)\)

Xét \(f(t)=t^2-4t\Rightarrow f'(t)=2t-4=0\Leftrightarrow t=2\)

Lập bảng biến thiên suy ra \(f(t)< f(4)=0\)

Do đó \(m\geq 0\)

Bình luận (0)

Các câu hỏi tương tự
TL
Xem chi tiết
TL
Xem chi tiết
MN
Xem chi tiết
DA
Xem chi tiết
NL
Xem chi tiết
VN
Xem chi tiết
LC
Xem chi tiết
SK
Xem chi tiết
TB
Xem chi tiết