\(1+\sqrt{4x-x^2-2}=1+\sqrt{2-\left(x^2-4x+4\right)}\)
\(=1+\sqrt{2-\left(x-2\right)^2}\le1+\sqrt{2}\)
Dấu "=" xảy ra khi \(x=2\)
\(1+\sqrt{4x-x^2-2}=1+\sqrt{2-\left(x^2-4x+4\right)}\)
\(=1+\sqrt{2-\left(x-2\right)^2}\le1+\sqrt{2}\)
Dấu "=" xảy ra khi \(x=2\)
Bài 1: Rút gọn biểu thức D = \(\sqrt{16x^4}-2x^2+1\)
Bài 2: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng điều kiện xác định”
e) E = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\) ĐKXĐ: \(x\ge0\)
Bài 3: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng hằng đẳng thức ”
B = \(1-\sqrt{x^2-2x+2}\)
Bài 4: Cho P = \(\dfrac{4\sqrt{x}+10}{2\sqrt{x}-1}\left(x\ge0;x\ne\dfrac{1}{4}\right)\). Tính tổng các giá trị x nguyên để biểu thức P có giá trị nguyên
Câu 1: Rút gọn
\(\dfrac{2}{\sqrt{5}-\sqrt{3}}+\dfrac{3}{\sqrt{6}+\sqrt{3}}\)
Câu 2:
Cho A= \(\dfrac{1}{x-2\sqrt{x-5}+3}\). Tìm giá trị lớn nhất của A, giá trị đó đạt được khi x bằng bao nhiêu?
Cho \(Q=\left(\dfrac{\sqrt{x}+2}{2\sqrt{x}+1+x}-\dfrac{\sqrt{x}-2}{x-1}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\) với \(x>0; x\ne1\)
Tìm số nguyên x lớn nhất để Q có giá trị nguyên
* Giải phương trình
a. \(\sqrt{\left(x-3\right)^2}=2\)
b. \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
* Cho Q= \(\dfrac{1}{x-2\sqrt{x}+3}\)
Tìm giá trị lớn nhất của Q
Tìm các giá trị nguyên của x để biểu thức C = \(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)\(\left(x\ge0;x\ne4\right)\) đạt giá trị lớn nhất
Ctv giúp em làm câu này với.
Câu hỏi : Tìm giá trị nguyên lớn nhất của x để P có giá trị nguyên.
Biết rằng : P = \frac{3\sqrt{x}}{\sqrt{x}+2}
Cho M=\(\dfrac{4\sqrt{x}}{\sqrt{x}+2}\)
tìm x để M đạt giá trị lớn nhất với x thuộc N,x<101
Tìm giá trị lớn nhất của biểu thức : \(A=5+\sqrt{3+2x-x^2}\)
* Giải phương trình
a. \(\sqrt{x^2-4x+4}=5\)
b. \(\sqrt{16x+16}-3\sqrt{x+1}+\sqrt{4x+4}=16-\sqrt{x+1}\)
* Cho biểu thức
A= \(\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\) với a>0
a. Rút gọn biểu thức A
b. Tính giá trị nhỏ nhất của A
a) Tìm giá trị lớn nhất của biểu thức A = \(\sqrt{-x^2+x+\dfrac{3}{4}}\)
b) Tìm giá trị nhỏ nhất của biểu thức B = \(\sqrt{4x^4-4x^2\left(x+1\right)+\left(x+1\right)^2+9}\)
c) Tìm giá trị nhỏ nhất của biểu thức C = \(\sqrt{25x^2-20x+4}+\sqrt{25x^2}\)