Ôn tập cuối năm phần số học

KK

1,\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

2,Giải phương trình:

a \(\dfrac{3x}{a}\) +a\(^2\) = \(\dfrac{ax}{3}-3a\)

b. \(\dfrac{1}{3\left(4-x\right)}-\dfrac{1}{a\left(4-x\right)}=\dfrac{2}{3\left(3-x\right)}-\dfrac{2}{a\left(3-x\right)}\)

Và tìm giá trị của a để phg trình có 1 nghiệm

3, Giải BPT:

a. \(x+1-\dfrac{x-1}{3}< x-\dfrac{2x+3}{2}+\dfrac{x}{3}+5\) và tìm giá trị nguyên âm của x thỏa mãn BPT

b. \(5+\dfrac{x+4}{5}< x-\dfrac{x-2}{2}+\dfrac{x+3}{3}\)

4, Cho 0 < x < 1. Tìm GTNN của biểu thức A= \(\dfrac{3}{1-x}+\dfrac{4}{x}\)

Các bn giúp mik vs,mik đag cần gấp.Mik xin cảm ơn ak

PL
25 tháng 6 2018 lúc 17:51

\(1.\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}=\dfrac{\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}}{\sqrt{2}}=\dfrac{\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}=\dfrac{|\sqrt{7}+1|-|\sqrt{7}-1|}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)

\(3a.x+1-\dfrac{x-1}{3}< x-\dfrac{2x+3}{2}+\dfrac{x}{3}+5\)

\(\Leftrightarrow\dfrac{6\left(x+1\right)-2\left(x-1\right)}{6}< \dfrac{6x-3\left(2x+3\right)+2x+30}{6}\)

\(\Leftrightarrow6x+6-2x+2< 6x-6x-9+2x+30\)

\(\Leftrightarrow6x-2x-2x+6+2+9-30< 0\)

\(\Leftrightarrow2x-13< 0\)

\(\Leftrightarrow x< \dfrac{13}{2}\)

KL...............

\(b.5+\dfrac{x+4}{5}< x-\dfrac{x-2}{2}+\dfrac{x+3}{3}\)

\(\Leftrightarrow\dfrac{150+6\left(x+4\right)}{30}< \dfrac{30x-15\left(x-2\right)+10\left(x+3\right)}{30}\)

\(\Leftrightarrow150+6x+24< 30x-15x+30+10x+30\)

\(\Leftrightarrow6x-30x+15x-10x+150+24-30-30< 0\)

\(\Leftrightarrow-19x+114< 0\)

\(\Leftrightarrow x>6\)

KL..................

Bình luận (1)
DD
25 tháng 6 2018 lúc 18:35

Câu 4 :

Ta có :

\(A=\dfrac{3}{1-x}+\dfrac{4}{x}\)

\(=\left(\dfrac{3}{1-x}+\dfrac{4}{x}\right)\left[\left(1-x\right)+x\right]\)

Theo BĐT Bu - nhi a - cốp xki ta có :

\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)

\(\Leftrightarrow\left(\dfrac{3}{1-x}+\dfrac{4}{x}\right)\left[\left(1-x\right)+x\right]\ge\left(\sqrt{\dfrac{3\left(1-x\right)}{1-x}}+\sqrt{\dfrac{4x}{x}}\right)^2=\left(\sqrt{3}+2\right)^2=7+4\sqrt{3}\)

Dấu \("="\) xảy ra khi \(\dfrac{3}{\left(1-x\right)^2}=\dfrac{4}{x^2}\)

\(\Leftrightarrow3x^2=4x^2-8x+4\)

\(\Leftrightarrow x^2-8x+4=0\)

\(\Delta=64-16=48>0\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=4+2\sqrt{3}\\x_2=4-2\sqrt{3}\end{matrix}\right.\)

Vậy GTNN của\(A=7+4\sqrt{3}\) khi \(\left[{}\begin{matrix}x_1=4+2\sqrt{3}\\x_2=4-2\sqrt{3}\end{matrix}\right.\)

Bình luận (1)
KK
25 tháng 6 2018 lúc 15:40

câu nào các bn lm đc thid cmt giúp mik vs ak.1 câu thôi cug đc

Bình luận (0)

Các câu hỏi tương tự
TP
Xem chi tiết
DT
Xem chi tiết
2S
Xem chi tiết
SK
Xem chi tiết
DN
Xem chi tiết
DT
Xem chi tiết
PG
Xem chi tiết
H24
Xem chi tiết
ON
Xem chi tiết