Violympic toán 9

PB

1.Giải pt:\(2x^2+\left(14-2\sqrt{x^2+8x}\right)x+8x-14\sqrt{x^2+8x}+24=0\)

2. Tìm các số nguyên x, y thoả mãn pt: \(x^2+y^2-xy=x+y+2\)

NL
10 tháng 11 2019 lúc 16:34

Kiểm tra lại đề câu a, \(...+24\) thì pt vô nghiệm, phải là \(...-24\) mới có lý

b/ \(x^2-\left(y+1\right)x+y^2-y-2=0\) (1)

\(\Delta=\left(y+1\right)^2-4\left(y^2-y-2\right)\ge0\)

\(\Leftrightarrow-3y^2+6y+9\ge0\)

\(\Leftrightarrow-1\le y\le3\Rightarrow y=\left\{-1;0;1;2;3\right\}\)

Thay lần lượt vào pt ban đầu để tìm x nguyên

Bình luận (0)
 Khách vãng lai đã xóa
NL
10 tháng 11 2019 lúc 16:45

ĐKXĐ: ...

\(\Leftrightarrow x^2+\left(x^2+8x\right)+\left(14-2\sqrt{x^2+8x}\right)x-14\sqrt{x^2+8x}+24=0\)

Đặt \(\sqrt{x^2+8x}=a\ge0\) pt trở thành:

\(x^2+a^2+\left(14-2x\right)x-14a+24=0\)

\(\Leftrightarrow x^2-2ax+a^2+14\left(x-a\right)+24=0\)

\(\Leftrightarrow\left(x-a\right)^2+14\left(x-a\right)+24=0\)

\(\Leftrightarrow\left(x-a+2\right)\left(x-a+12\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=x+2\\a=x+12\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+8x}=x+2\left(x\ge-2\right)\\\sqrt{x^2+8x}=x+12\left(x\ge-12\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+8x=x^2+4x+4\\x^2+8x=x^2+24x+144\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-9\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NM
Xem chi tiết
ML
Xem chi tiết
MD
Xem chi tiết
H24
Xem chi tiết
VC
Xem chi tiết
PM
Xem chi tiết
PP
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết