Chương I - Căn bậc hai. Căn bậc ba

ND

1)Chứng minh với mọi a,b dương ta có: a5 + b5 >= a3b2 + a2 b3

Dấu '=' xảy ra khi nào?

2) Cho a,b,c> 0 thoả mãn abc = 1 . Tìm giá trị lớn nhất của biểu thức

P= \(\dfrac{ab}{a^{5^{ }}+b^5+ab}\) + \(\dfrac{bc}{b^5+c^5+bc}\) + \(\dfrac{ca}{c^5+a^5+ca}\)

AH
8 tháng 5 2018 lúc 23:11

Bài 1:

Sử dụng biến đổi tương đương. Ta có:

\(a^5+b^5\geq a^3b^2+a^2b^3\)

\(\Leftrightarrow a^5+b^5-a^3b^2-a^2b^3\geq 0\)

\(\Leftrightarrow a^3(a^2-b^2)-b^3(a^2-b^2)\geq 0\)

\(\Leftrightarrow (a^3-b^3)(a^2-b^2)\geq 0\)

\(\Leftrightarrow (a-b)^2(a^2+ab+b^2)(a+b)\geq 0\) (luôn đúng với mọi $a,b$ dương)

Ta có đpcm.

Dấu bằng xảy ra khi \((a-b)^2=0\Leftrightarrow a=b\)

Bài 2: Sử dụng kết quả bài 1:

\(a^5+b^5\geq a^3b^2+a^2b^3\Rightarrow a^5+b^5+ab\geq a^3b^2+a^2b^3+ab\)

\(\Rightarrow \frac{ab}{a^5+b^5+ab}\leq \frac{ab}{a^3b^2+a^2b^3+ab}=\frac{1}{a^2b+ab^2+1}=\frac{1}{a^2b+ab^2+abc}=\frac{1}{ab(a+b+c)}\)

Hoàn toàn tt:

\(\frac{bc}{b^5+c^5+bc}\leq \frac{1}{bc(a+b+c)}; \frac{ca}{c^5+a^5+ac}\leq \frac{1}{ac(a+b+c)}\)

Do đó:
\(P\leq \frac{1}{ab(a+b+c)}+\frac{1}{bc(a+b+c)}+\frac{1}{ac(a+b+c)}\). Thay \(1=abc\)

\(\Leftrightarrow P\leq \frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=1\) (đpcm)

 

 

Bình luận (1)

Các câu hỏi tương tự
VN
Xem chi tiết
TG
Xem chi tiết
NT
Xem chi tiết
NC
Xem chi tiết
NC
Xem chi tiết
NP
Xem chi tiết
HN
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết