Chương I - Căn bậc hai. Căn bậc ba

VN

Cho a,b,c là 3 só thực dương thỏa mãn : abc = 1

Tìm giá trị lớn nhất của biểu thức:

\(p=\dfrac{ab}{a^5+b^5+ab}+\dfrac{bc}{b^5+c^5+bc}+\dfrac{ca}{c^5+a^5+ca}\)

LF
22 tháng 5 2017 lúc 22:17

Từ \(a^5+b^5=\left(a+b\right)\left(a^4-a^3b+a^2b^2-ab^3+b^4\right)\)

\(=\left(a+b\right)\left[a^2b^2+a^3\left(a-b\right)-b^3\left(a-b\right)\right]\)

\(=\left(a+b\right)\left[a^2b^2+\left(a-b\right)\left(a^3-b^3\right)\right]\)

\(=\left(a+b\right)\left[a^2b^2+\left(a-b\right)^2\left(a^2+ab+b^2\right)\right]\)

\(\ge\left(a+b\right)^2a^2b^2\forall a,b>0\)

\(\Rightarrow a^5+b^5+ab\ge ab\left[ab\left(a+b\right)+1\right]\)

\(\Rightarrow\dfrac{ab}{a^5+b^5+ab}\le\dfrac{ab}{ab\left[ab\left(a+b\right)+1\right]}=\dfrac{1}{ab\left(a+b\right)+1}=\dfrac{c}{a+b+c}\left(abc=1\right)\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\dfrac{bc}{b^5+c^5+bc}\le\dfrac{a}{a+b+c};\dfrac{ca}{c^5+a^5+ca}\le\dfrac{b}{a+b+c}\)

Cộng theo vế 3 BĐT trên ta có:

\(P\le\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)

Đẳng thức xảy ra khi \(a=b=c=1\)

Bình luận (1)

Các câu hỏi tương tự
ND
Xem chi tiết
NT
Xem chi tiết
TG
Xem chi tiết
HN
Xem chi tiết
NH
Xem chi tiết
PH
Xem chi tiết
NC
Xem chi tiết
LM
Xem chi tiết
TN
Xem chi tiết