Violympic toán 9

NH

1.Cho x,y,z là các số thực thỏa mãn x+y+z = 2012 và biểu thức

A=\(\dfrac{x^3}{x^2+xy+y^2}+\dfrac{y^3}{y^2+yz+z^2}+\dfrac{z^3}{z^2+zx+x^2}\)

Tìm GTNN của A

2.Cho x,y,z là các số thực dương thỏa mãn x+y+z =2015

Tìm GTNN của biểu thức S=\(\dfrac{x^3}{x^2+y^2}+\dfrac{y^3}{y^2+z^2}+\dfrac{z^3}{z^2+x^2}\)

Ai đấy có thể chỉ cho em cách giải 2 bài này không ạ !! :3 :3

:3

MS
8 tháng 12 2018 lúc 13:26

1) Áp dụng bđt Cauchy-Schwarz:

\(A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x^3+x^2y+xy^2+y^3+y^2z+yz^2+z^3+z^2x+x^2z}\)

\(=\dfrac{\left(x^2+y^2+z^2\right)^2}{x\left(x^2+y^2+z^2\right)+y\left(x^2+y^2+z^2\right)+z\left(x^2+y^2+z^2\right)}=\dfrac{\left(x^2+y^2+z^2\right)^2}{\left(x+y+z\right)\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{x+y+z}\ge\dfrac{\dfrac{\left(x+y+z\right)^2}{3}}{x+y+z}=\dfrac{x+y+z}{3}=\dfrac{2012}{3}\)

\("="\Leftrightarrow x=y=z=\dfrac{2012}{3}\)

2)

Áp dụng bđt AM-GM:

\(\dfrac{x^3}{x^2+y^2}=x-\dfrac{xy^2}{x^2+y^2}\ge x-\dfrac{xy^2}{2xy}=x-\dfrac{y}{2}\)

Chứng minh tương tự và cộng theo vế:

\(S\ge x-\dfrac{y}{2}+y-\dfrac{z}{2}+z-\dfrac{x}{2}=\dfrac{2015}{2}\)

\("="\Leftrightarrow x=y=z=\dfrac{2015}{3}\)

Bình luận (2)
MS
8 tháng 12 2018 lúc 22:43

Mk vừa nghĩ ra 1 cách xem thử nhé :v

AM-GM:

\(\left\{{}\begin{matrix}xy\le\dfrac{x^2+y^2}{2}\\yz\le\dfrac{y^2+z^2}{2}\\xz\le\dfrac{x^2+z^2}{2}\end{matrix}\right.\Leftrightarrow A\ge\dfrac{x^3}{x^2+\dfrac{x^2+y^2}{2}+y^2}+\dfrac{y^3}{y^2+\dfrac{y^2+z^2}{2}+z^2}+\dfrac{z^3}{z^2+\dfrac{x^2+z^2}{2}+x^2}\)

\(=\dfrac{x^3}{\dfrac{3}{2}\left(x^2+y^2\right)}+\dfrac{y^3}{\dfrac{3}{2}\left(y^2+z^2\right)}+\dfrac{z^3}{\dfrac{3}{2}\left(x^2+z^2\right)}\)

Rút mẫu ra rồi làm như bài 2 thôi :>

Bình luận (0)

Các câu hỏi tương tự
LN
Xem chi tiết
H24
Xem chi tiết
DL
Xem chi tiết
DF
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
AD
Xem chi tiết
VD
Xem chi tiết
LM
Xem chi tiết