Ôn tập cuối năm phần số học

LP

1,cho a,b,c. cm 1\(\ge\) a,b,c\(\ge\)0, a2 +b2+c2\(\le\)2

2, cho a,b,c>0.

CM: (a+b+c)(\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\))

3,cho a,b,c>0 CM:

\(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge6\)

mn giải giúp mk nha :)

DM
9 tháng 5 2017 lúc 22:57

Ùi mình làm theo kiểu khác thử :V, nhưng có hơi hướng giống và bổ sung :D

Câu 2 : a,b,c > 0. CM : \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)

Giải :

C1 : Áp dụng bất đẳng thức Cauchy - Schwarz dạng Engel ta có :

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{9}{a+b+c}\left(ĐPCM\right)\)

Đẳng thức xảy ra khi \(\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\).

C2 : Đầy đủ hơn với cách giải đúng của bạn Hoàng Thiên Di :

Áp dụng BĐT AM-GM cho 3 số dương (sgk là cosi :v)

\(a+b+c\ge3\sqrt[3]{abc}\)\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1+1+1+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\)

\(\ge3+2+2+2=9\left(ĐPCM\right)\)

Câu 3 : a,b,c > 0. CM : \(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge6\)

Giải :

\(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge6\)

\(\Leftrightarrow\dfrac{a}{c}+\dfrac{b}{c}+\dfrac{b}{a}+\dfrac{c}{a}+\dfrac{c}{b}+\dfrac{a}{b}\ge6\)

\(\Leftrightarrow\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\ge6\)

Theo bất đẳng thức Cosi : \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{xy}{yx}}=2\)

Thay vào các vế được : \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ba}}=2\sqrt{1}=2\)

\(\dfrac{a}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{ac}{ca}}=2\sqrt{1}=2\)

\(\dfrac{b}{c}+\dfrac{c}{b}\ge2\sqrt{\dfrac{bc}{cb}}=2\sqrt{1}=2\)

\(\Leftrightarrow2+2+2\ge6\) (đúng)

BĐT được c/m.

Bình luận (0)
H24
9 tháng 5 2017 lúc 13:46

xem lại đề

a=b=c=1 =>3<=2

Bình luận (0)
HD
9 tháng 5 2017 lúc 14:46

Bài 3 :

Đặt A= \(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}=\dfrac{a}{c}+\dfrac{b}{c}+\dfrac{b}{a}\)+\(\dfrac{c}{a}+\dfrac{c}{b}+\dfrac{a}{b}\)

=\(\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\) (*)

Xét BĐT : \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\) , với x,y >0

Áp dụng AM-GM => \(\dfrac{x}{y}+\dfrac{y}{x}\)\(\ge2\sqrt{\dfrac{xy}{xy}}=2\)

Thay vào (*) => A \(\ge2+2+2=6\)

Hay A\(\ge6\left(đpcm\right)\)

Bình luận (0)
HD
9 tháng 5 2017 lúc 14:46

Bài 2

Áp dụng BĐT : AM-GM cho 3 số dương :

a+b+c \(\ge3\sqrt[3]{abc}\) ;

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)

Nhân vế với vế ta được

(a+b+c)(\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\))\(\ge9\) ( đpcm)

Bình luận (0)
HD
9 tháng 5 2017 lúc 14:47

Đề câu 1 => mik ko hiểu

Bình luận (0)
LP
9 tháng 5 2017 lúc 14:53

xl nha, câu 1 mk vt sai

Bình luận (0)

Các câu hỏi tương tự
VC
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
NL
Xem chi tiết
NH
Xem chi tiết
NQ
Xem chi tiết
TK
Xem chi tiết
H24
Xem chi tiết