Chứng minh bất đẳng thức với a, b, c là số dương
a, (a+b+c) \((\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c})\)\(\ge9\)
b, \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\ge1,5\)
chứng minh bất đẳng thức
A=(a+b)(\(\dfrac{1}{a}\)+\(\dfrac{1}{b}\))\(\ge\) 4
help me!!TT
b) B=\(\dfrac{a+b}{c}\)+\(\dfrac{b+c}{a}\)+\(\dfrac{c+a}{b}\)\(\ge\)6 ( a,b,c > 0)
CM CÁC BẤT ĐẲNG THỨC SAU
A) \(\left(A+B\right)\left(\dfrac{1}{A}+\dfrac{1}{B}\right)\ge4\)
B) \(\left(A+B+C\right)\left(\dfrac{1}{A}+\dfrac{1}{B}+\dfrac{1}{C}\right)\ge9\)
C) \(\dfrac{1}{A}+\dfrac{1}{B}+\dfrac{1}{C}\ge\dfrac{9}{A+B+C}\)
Câu 1: Giải PT:
a) 2x2 - 6x + 1 = 0
b) x3 + x = 2
c) (x-2)(x+1) < 0
d) \(\dfrac{2x-5}{x+5}\) > 0
Câu 2: Chứng minh bất đẳng thức sau:
a) 2x - x2 \(\le\) 1 với mọi x
b) A = (a+b)\(\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)\(\ge\) 4
c) B = \(\dfrac{a+b}{c}+\dfrac{b+a}{a}+\dfrac{c+a}{b}\ge6\) (a,b,c > 0)
d) \(\dfrac{a}{4b^2+1}+\dfrac{b}{4a^2+1}\ge\dfrac{1}{2}\) (a,b dương; a+b=4ab)
cho a, b, c thỏa mãn:\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\)
chứng minh: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}=0\)
Cho 0<a≤b≤c .chứng minh rằng
\(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\)≥\(\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\)
CM CÁC BẤT ĐẲNG THỨC SAU
A) \(X+\dfrac{1}{X}\ge2\) (X>0)
B) \(\dfrac{A}{B}+\dfrac{B}{A}\ge2\) (AB>0)
Cho \(\dfrac{a-\left(c-b\right)}{b-c}+\dfrac{b-\left(a-c\right)}{c-a}+\dfrac{c-\left(b-a\right)}{a-b}=3\)
Chứng minh rằng: \(\dfrac{a}{\left(b-c\right)^2}+\dfrac{b}{\left(c-a\right)^2}+\dfrac{c}{\left(a-b\right)^2}=0\)
cho a,b,c > 0 thỏa mãn a + b + c = 6. Chứng minh:
\(\dfrac{a}{\sqrt{b^3+1}}+\dfrac{b}{\sqrt{c^3+1}}+\dfrac{c}{\sqrt{a^3+1}}\ge2\)