Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Violympic toán 8

KS

1.CHo 0 < = a,b,c < = 1. CM: \(\frac{a}{ab+c+1}+\frac{b}{bc+a+1}+\frac{c}{ca+b+1}\le1\)

NL
10 tháng 10 2020 lúc 12:35

- Nếu cả 3 số đều bằng 0 thì BĐT hiển nhiên đúng

- Nếu \(a+b+c\ne0\)

Do \(0\le a;c\le1\Rightarrow\left(a-1\right)\left(c-1\right)\ge0\)

\(\Leftrightarrow ac+1\ge a+c\)

\(\Leftrightarrow ac+b+1\ge a+b+c\)

\(\Leftrightarrow\frac{c}{ac+b+1}\le\frac{c}{a+b+c}\)

Hoàn toàn tương tự, ta có: \(\frac{a}{ab+c+1}\le\frac{a}{a+b+c};\) \(\frac{b}{bc+a+1}\le\frac{b}{a+b+c}\)

Cộng vế với vế ta có đpcm

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(1;1;1\right)\) hoặc \(\left(a;b;c\right)=\left(0;0;1\right);\left(0;1;1\right)\) và hoán vị

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
VL
Xem chi tiết
TA
Xem chi tiết
NT
Xem chi tiết
TT
Xem chi tiết
OM
Xem chi tiết
H24
Xem chi tiết
KS
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết