Đại số lớp 7

CV

Tính tổng 100 số hạng đầu tiên :

a) 1/3 ; 1/15 ; 1/35 ;...

b) 1/5 ; 1/45 ; 1/117 ; 1/221

NT
8 tháng 6 2017 lúc 16:20

a, Ta có: \(\dfrac{1}{3}=\dfrac{1}{1.3};\dfrac{1}{15}=\dfrac{1}{3.5};\dfrac{1}{35}=\dfrac{1}{5.7};...\)

Gọi x là thừa số thứ nhất ở phần mẫu của số hạng thứ 100 \(\left(x\in N;x>0\right)\), ta có:

\(\left(x-1\right):2+1=100\Rightarrow\left(x-1\right):2=99\Rightarrow x-1=198\Rightarrow x=199\)

\(\Rightarrow\) số thứ 100 của dãy trên là \(\dfrac{1}{199.201}\)

Do đó tổng 100 số hạng đầu tiên của dãy trên là:

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{199.201}\)

\(=\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{199.201}\right):2\)

\(=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{199}-\dfrac{1}{201}\right):2\)

\(=\left(1-\dfrac{1}{201}\right):2=\dfrac{200}{201}:2=\dfrac{200}{201}.\dfrac{1}{2}=\dfrac{100}{201}\)

Vậy tổng 100 số hạng đầu tiên của dãy trên là \(\dfrac{100}{201}\)

b, Ta có: \(\dfrac{1}{5}=\dfrac{1}{1.5};\dfrac{1}{45}=\dfrac{1}{5.9};\dfrac{1}{117}=\dfrac{1}{9.13};...\)

Gọi a là thừa số thứ nhất ở phần mẫu của số hạng thứ 100 (\(a\in N\)*), ta có: \(\left(a-1\right):4+1=100\Rightarrow\left(a-1\right):4=99\)

\(\Rightarrow a-1=99.4=396\Rightarrow a=397\)

\(\Rightarrow\) số thứ 100 của dãy trên là \(\dfrac{1}{397.401}\)

Do đó, tổng 100 số hạng đầu tiên của dãy trên là:

\(\dfrac{1}{1.5}+\dfrac{1}{5.9}+...+\dfrac{1}{397.401}=\left(\dfrac{4}{1.5}+\dfrac{4}{5.9}+...+\dfrac{4}{397.401}\right):4\)

\(=\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{397}-\dfrac{1}{401}\right):4\)

\(=\left(1-\dfrac{1}{401}\right):4=\dfrac{400}{401}:4=\dfrac{100}{401}\)

Vậy tổng 100 số hạng đầu tiên của dãy trên là \(\dfrac{100}{401}\)

Bình luận (0)
DD
8 tháng 6 2017 lúc 16:27

Gọi dãy số \(\dfrac{1}{5};\dfrac{1}{45};\dfrac{1}{117};\dfrac{1}{221};......\) là B

Dựa theo công thức mình vừa làm bài a ta được :

B = \(\dfrac{1}{1.5}+\dfrac{1}{5.9}+\dfrac{1}{9.13}+\dfrac{1}{13.17}+......+\dfrac{1}{397.401}\)

B = \(\dfrac{1}{4}\) . \(\left[\dfrac{4}{1.5}+\dfrac{4}{5.9}+\dfrac{4}{9.13}+\dfrac{4}{13.17}+.......+\dfrac{4}{391.401}\right]\)

B = \(\dfrac{1}{4}\) . \(\left(1-\dfrac{1}{5}\right)+\left(\dfrac{1}{5}-\dfrac{1}{9}\right)+\left(\dfrac{1}{9}-\dfrac{1}{13}\right)+\left(\dfrac{1}{13}-\dfrac{1}{17}\right)+.........+\left(\dfrac{1}{397}-\dfrac{1}{401}\right)\)

B = \(\dfrac{1}{4}\) . \(\left(1-\dfrac{1}{401}\right)\)

B = \(\dfrac{100}{401}\)

Bình luận (0)
DD
8 tháng 6 2017 lúc 16:11

Gọi dãy số \(\dfrac{1}{3}\) ; \(\dfrac{1}{15}\) ; \(\dfrac{1}{35}\) ,..... là S

Ta có : S = \(\dfrac{1}{1.3}\) ; \(\dfrac{1}{3.5}\) ; \(\dfrac{1}{5.7}\) ; ..........

Các số hạng của dãy có dạng \(\dfrac{1}{n\left(n+2\right)}\) với n \(\in\) (N khác 0) , n lẻ

\(\dfrac{1}{n\left(n+2\right)}\) = \(\dfrac{1}{2}\) . \(\dfrac{2}{n\left(n+2\right)}\) = \(\dfrac{1}{2}\) \(\left(\dfrac{1}{n}-\dfrac{1}{n+2}\right)\)

Do đó tổng 100 số hạng đầu tiên của dãy là:

\(\dfrac{1}{1.3}\) + \(\dfrac{1}{3.5}+\dfrac{1}{5.7}+.........+\dfrac{1}{199.201}\)

= \(\dfrac{1}{2}\) . \(\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+......+\dfrac{2}{199.201}\right)\)

= \(\dfrac{1}{2}\) . \(\left(1-\dfrac{1}{3}\right)+\left(\dfrac{1}{3}-\dfrac{1}{5}\right)+\left(\dfrac{1}{5}-\dfrac{1}{7}\right)+......+\left(\dfrac{1}{199}-\dfrac{1}{201}\right)\)

= \(\dfrac{1}{2}\) . \(\left(1-\dfrac{1}{201}\right)\)

= \(\dfrac{100}{201}\)

Bình luận (0)

Các câu hỏi tương tự
NG
Xem chi tiết
HH
Xem chi tiết
HH
Xem chi tiết
NM
Xem chi tiết
NA
Xem chi tiết
TT
Xem chi tiết
YT
Xem chi tiết
NY
Xem chi tiết
PH
Xem chi tiết