\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{49.50.51}\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-....-\frac{1}{50.51}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2550}\right)=\frac{637}{2550}\)
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{49.50.51}\)
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{49.50.51}\)
ta có dạng tổng quát
\(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)-\left(n+2\right)}=\frac{2}{n\left(n+1\right)\left(n+2\right)}\) bạn quy đồng ra rồi tính nha
\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+.....+\frac{1}{49.50}-\frac{1}{50.51}\)
\(2A=\frac{1}{1.2}-\frac{1}{50.51}\)
\(2A=\frac{637}{1275}\)
\(A=\frac{637}{2550}\)
= 1/2 (1/1.2 - 1/50.51)
=......