Chương I : Số hữu tỉ. Số thực

NA

1/ Tìm x

a/ (x-2)(x+2/3)>0

b/ (x-2,5)^20+(y+3,2)^10=0

2/ Chứng minh

A=75(4^2000+4^1999... +4^2+4^1) +25 chia hết cho 100

VT
4 tháng 8 2019 lúc 11:55

1)

a) \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)

=> \(x-2\)\(x+\frac{2}{3}\) cùng dấu.

Ta có 2 trường hợp:

TH1:

\(\left\{{}\begin{matrix}x-2>0\\x+\frac{2}{3}>0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x>2\\x>-\frac{2}{3}\end{matrix}\right.\) => \(x>2\left(TM\right).\)

TH2:

\(\left\{{}\begin{matrix}x-2< 0\\x+\frac{2}{3}< 0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x< 2\\x< -\frac{2}{3}\end{matrix}\right.\) => \(x< -\frac{2}{3}\left(TM\right).\)

Vậy \(x>2\)\(x< -\frac{2}{3}.\)

Mình chỉ làm được thế thôi nhé bạn.

Chúc bạn học tốt!

Bình luận (0)
H24
4 tháng 8 2019 lúc 14:32

1.b)

Ta có \(VT=\left(x-2,5\right)^{20}+\left(y+3,2\right)^{10}\ge0\forall x,y\)

Nên để xảy ra đẳng thức tức là để tìm được x thỏa mãn đề bài thì:

\(\left\{{}\begin{matrix}\left(x-2,5\right)^{20}=0\\\left(y+3,2\right)^{10}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2,5\\y=-3,2\end{matrix}\right.\)

Vậy...

Bình luận (0)
BT
4 tháng 8 2019 lúc 11:49

a,\(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2>0\\x+\frac{2}{3}>0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x>2\\x>\frac{-2}{3}\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
GJ
Xem chi tiết
IK
Xem chi tiết
H24
Xem chi tiết
HA
Xem chi tiết
MA
Xem chi tiết
SM
Xem chi tiết
HN
Xem chi tiết
HU
Xem chi tiết