Ôn tập cuối năm phần số học

CK

1) Tìm x:

a) 4x² – 25– (2x–5)(2x+7)=0

b) 2x³ + 3x² – 2x–3 =0

c) x³ +27+(x+3)(x–9)=0

2) PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ:

a) x^16 –1

b) x^6 – y^6

DH
16 tháng 8 2017 lúc 12:46

Bài 2:

a, \(x^{16}-1=\left(x^8\right)^2-1^2\)

\(=\left(x^8-1\right)\left(x^8+1\right)\)

\(=\left(x^4-1\right)\left(x^4+1\right)\left(x^8+1\right)\)

\(=\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\)

b, \(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2\)

\(=\left(x^3-y^3\right)\left(x^3+y^3\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)

Chúc bạn học tốt!!!

Bình luận (0)
DH
16 tháng 8 2017 lúc 12:53

Bài 1:

a, \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)

\(\Rightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)

\(\Rightarrow\left(2x-5\right)\left(2x+5-2x-7\right)=0\)

\(\Rightarrow2x-5=0\Rightarrow x=\dfrac{5}{2}\)

b, \(2x^3+3x^2-2x-3=0\)

\(\Rightarrow2x^3-2x^2+5x^2-5x+3x-3=0\)

\(\Rightarrow2x^2\left(x-1\right)+5x\left(x-1\right)+3\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(2x^2+5x+3\right)=0\)

\(\Rightarrow\left(x-1\right)\left(2x^2+2x+3x+3\right)=0\)

\(\Rightarrow\left(x-1\right)\left[2x\left(x+1\right)+3\left(x+1\right)\right]=0\)

\(\Rightarrow\left(x-1\right)\left(x+1\right)\left(2x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\2x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=-\dfrac{3}{2}\end{matrix}\right.\)

c, \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)

\(\Rightarrow\left(x+3\right)\left(x^2+3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)

\(\Rightarrow\left(x+3\right)\left(x^2+3x+9+x-9\right)=0\)

\(\Rightarrow\left(x+3\right)\left(x^2+4x\right)=0\)

\(\Rightarrow x\left(x+3\right)\left(x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x+3=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=-4\end{matrix}\right.\)

Chúc bạn học tốt!!!

Bình luận (1)
MP
16 tháng 8 2017 lúc 13:04

bài 1) a) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)

\(\Leftrightarrow4x^2-25-\left(4x^2+14x-10x-35\right)=0\)

\(\Leftrightarrow4x^2-25-4x^2-14x+10x+35=0\)

\(\Leftrightarrow-4x+10=0\Leftrightarrow4x=10\Leftrightarrow x=\dfrac{10}{4}\) vậy \(x=\dfrac{10}{4}\)

b) \(2x^3+3x^2-2x-3=0\Leftrightarrow\left(2x^3-2x\right)+\left(3x^2-3\right)=0\)

\(\Leftrightarrow2x\left(x^2-1\right)+3\left(x^2-1\right)=0\Leftrightarrow\left(2x+3\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(2x+3\right)\left(x+1\right)\left(x-1\right)=0\) \(\Leftrightarrow\left\{{}\begin{matrix}2x+3=0\\x+1=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=-3\\x=-1\\x=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{2}\\x=-1\\x=1\end{matrix}\right.\) vậy \(x=\dfrac{-3}{2};x=-1;x=1\)

c) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left(x^2-3x+9+x-9\right)\left(x+3\right)=0\Leftrightarrow\left(x^2-2x\right)\left(x+3\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+3\right)=0\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-2=0\\x+3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\\x=-3\end{matrix}\right.\)

vậy \(x=0;x=2;x=-3\)

bài 2) a) \(x^{16}-1=\left(x^8\right)^2-1=\left(x^8\right)^2-1^2=\left(x^8-1\right)\left(x^8+1\right)\)

\(=\left(\left(x^4\right)^2-1^2\right)\left(x^8+1\right)=\left(x^4-1\right)\left(x^4+1\right)\left(x^8+1\right)\)

\(=\left(\left(x^2\right)^2-1^2\right)\left(x^4+1\right)\left(x^8+1\right)=\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\)

b) \(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2=\left(x^3-y^3\right)\left(x^3+y^3\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)

Bình luận (0)

Các câu hỏi tương tự
VL
Xem chi tiết
LR
Xem chi tiết
VN
Xem chi tiết
BH
Xem chi tiết
TN
Xem chi tiết
PD
Xem chi tiết
TL
Xem chi tiết
PD
Xem chi tiết
H24
Xem chi tiết