Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG

TA

1/ Tìm nguyên hàm: 

\(\int\dfrac{dx}{x^2.\sqrt{x^2+1}}\)

2, Đường thẳng d: \(\dfrac{x+1}{2}=\dfrac{y-1}{-1}=\dfrac{z-2}{-1}\). Gọi (P) là mặt phẳng chưa đường thẳng d và tạo với mp (Oxy) một góc nhỏ nhất. Tính khoảng cách từ M (0,3,-4) đến mp (P).

NL
27 tháng 5 2021 lúc 20:04

\(I=\int\dfrac{\sqrt{x^2+1}}{x^2\left(x^2+1\right)}dx=\int\left(\dfrac{\sqrt{x^2+1}}{x^2}-\dfrac{1}{\sqrt{x^2+1}}\right)dx\)

\(=\int\dfrac{\sqrt{x^2+1}}{x^2}dx-\int\dfrac{1}{\sqrt{x^2+1}}dx=I_1-I_2\)

Xét  \(I_1=\int\dfrac{\sqrt{x^2+1}}{x^2}dx\)

Đặt \(\left\{{}\begin{matrix}u=\sqrt{x^2+1}\\dv=\dfrac{1}{x^2}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{x}{\sqrt{x^2+1}}dx\\v=-\dfrac{1}{x}\end{matrix}\right.\)

\(\Rightarrow I_1=-\dfrac{\sqrt{x^2+1}}{x}+\int\dfrac{1}{\sqrt{x^2+1}}dx=-\dfrac{\sqrt{x^2+1}}{x}+I_2\)

\(\Rightarrow I=-\dfrac{\sqrt{x^2+1}}{x}+I_2-I_2=-\dfrac{\sqrt{x^2+1}}{x}+C\)

2.

Gọi d' là hình chiếu của d lên Oxy, M là giao điểm của d và Oxy

Khi đó với mọi đường thẳng d'' nào đó đi qua M thì đều tạo với d 1 góc lớn hơn góc giữa d và d'

Hay góc giữa (P) và Oxy nhỏ nhất là góc giữa d và d'

Điều này xảy ra khi d và d' vuông góc \(d_1\) , trong đó \(d_1\) là giao tuyến của (P) và Oxy

Tới đây thì chắc đơn giản:

- Tìm vtcp \(\overrightarrow{u_{d_1}}\) với \(d_1\) thuộc Oxy, qua M và vuông góc d

- (P) sẽ nhận \(\left[\overrightarrow{u_d};\overrightarrow{u_{d1}}\right]\) là 1 vtpt và đi qua M

Bình luận (2)

Các câu hỏi tương tự
NV
Xem chi tiết
KH
Xem chi tiết
H24
Xem chi tiết
PD
Xem chi tiết
NM
Xem chi tiết
HK
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết
HN
Xem chi tiết