Violympic toán 9

HM

1 Tìm n thuộc N để a=n^4-3n^2+1 là số nguyên tố

2. Tìm nghiêm nguyên của phương trình : xy/z+uz/x+xz/y=3

Ai giúp mk vs huhu

AA
5 tháng 11 2019 lúc 12:47

1.\(a=n^4-3n^2+1\)

\(=n^4+n^3-n^2-n^3-n^2+n-n^2-n+1\)

\(=n^2\left(n^2+n-1\right)-n\left(n^2+n-1\right)-\left(n^2+n-1\right)\)

\(=\left(n^2+n-1\right)\left(n^2-n-1\right)\)

Để a là số nguyên tố thì 1 trong hai số là 1 và số chính phương nên:

\(\left\{{}\begin{matrix}n^2+n-1=1\\n^2-n-1=a\end{matrix}\right.\)(1) hoặc \(\left\{{}\begin{matrix}n^2-n-1=1\\n^2+n-1=a\end{matrix}\right.\)(2)

Giải ra ta được:

-TH (1):\(\left\{{}\begin{matrix}\left(n-1\right)\left(n+2\right)=0\\n^2-n-1=a\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}n=1\left(tm\right)\\n=-2\left(l\right)\end{matrix}\right.\)\(a=n^2-n-1\)

\(\Rightarrow a=1-1-1=-1\left(l\right)\)

-TH (2):\(\left\{{}\begin{matrix}\left(n-2\right)\left(n+1\right)=0\\n^2+n-1=a\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}n=2\left(tm\right)\\n=-1\left(l\right)\end{matrix}\right.\)\(a=n^2+n-1\)

\(\Rightarrow a=2^2+2-1=4+2-1=5\)

Vậy với n=2 thì a=5 là số nguyên tố thỏa mãn yêu cầu

*không chắc lắm nha do không rành phần này lắm haha

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
MH
Xem chi tiết
H24
Xem chi tiết
MM
Xem chi tiết
MD
Xem chi tiết
LT
Xem chi tiết
NC
Xem chi tiết
AR
Xem chi tiết
EO
Xem chi tiết
MD
Xem chi tiết