Chương I : Số hữu tỉ. Số thực

NH

1. So sánh:

a. 2100 và 1030

b. 5\(\times\)825 và 12811

c. 8\(\times\)276 và 910

d. 2100 và 1031

NT
26 tháng 7 2020 lúc 17:53

Bài 1: So Sánh

a) Ta có: \(2^{100}=2^{10^{10}}=1024^{10}\)

\(10^{30}=10^{3\cdot10}=1000^{10}\)

\(1024^{10}>1000^{10}\)

nên \(2^{100}>10^3\)

b) Ta có: \(5\cdot8^{25}=5\cdot2^{75}\)

\(128^{11}=2^{77}=4\cdot2^{75}\)

\(5\cdot2^{75}>4\cdot2^{75}\)

nên \(5\cdot8^{25}>128^{11}\)

c) Ta có: \(8\cdot27^6=8\cdot3^{18}\)

\(9^{10}=3^{20}=9\cdot3^{18}\)

\(8\cdot3^{18}< 9\cdot3^{18}\)

nên \(8\cdot27^6< 9^{10}\)

d) Ta có: \(2^{100}=2^{69}\cdot2^{31}\)

\(=2^{31}\cdot2^{63}\cdot2^6\)

\(=2^{31}\cdot\left(2^9\right)^7\cdot\left(2^2\right)^3\)

\(=2^{31}\cdot512^7\cdot4^3\)

Ta có: \(10^{31}=2^{31}\cdot5^{31}\)

\(=2^{31}\cdot5^{28}\cdot5^3\)

\(=2^{31}\cdot\left(5^4\right)^7\cdot5^3\)

\(=2^{31}\cdot625^7\cdot5^3\)

Ta có: \(512^7< 625^7\)

\(4^3< 5^3\)

Do đó: \(512^7\cdot4^3< 625^7\cdot5^3\)

\(\Leftrightarrow2^{31}\cdot512^7\cdot4^3< 2^{31}\cdot625^7\cdot5^3\)

hay \(2^{100}< 10^{31}\)

Bình luận (0)

Các câu hỏi tương tự
NC
Xem chi tiết
BH
Xem chi tiết
HT
Xem chi tiết
LT
Xem chi tiết
TN
Xem chi tiết
LT
Xem chi tiết
NA
Xem chi tiết
DT
Xem chi tiết
NH
Xem chi tiết