Chương I : Số hữu tỉ. Số thực

HT

1. Tính:

B= (1+1/2+1/4+1/8+1/16)/(1-1/2+1/4-1/8+1/16)

2. Tính:

A= 2/(1×3)+2/(3×5)+2/(5×7)+...+2/(99×101)

B= 1/(1×4)+1/(4×7)+1/(7×10)+1/(10×13)+1/(13×16)

- em đaq cần gấp moq m.n giúp.

HH
10 tháng 6 2018 lúc 10:05

Bài 2:

\(A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)

\(\Leftrightarrow A=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)

\(\Leftrightarrow A=\dfrac{1}{1}-\dfrac{1}{101}\)

\(\Leftrightarrow A=\dfrac{100}{101}\)

Vậy ...

\(B=\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+\dfrac{1}{13.16}\)

\(\Leftrightarrow B=\dfrac{1}{3}\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{16}\right)\)

\(\Leftrightarrow B=\dfrac{1}{3}\left(\dfrac{1}{1}-\dfrac{1}{16}\right)\)

\(\Leftrightarrow B=\dfrac{1}{3}.\dfrac{15}{16}\)

\(\Leftrightarrow B=\dfrac{5}{16}\)

Vậy ...

Bình luận (0)
MP
10 tháng 6 2018 lúc 14:42

Bài 1:

B=\(\dfrac{\left(1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}\right)}{\left(1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}\right)}\)

\(=\dfrac{\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}\right)}{\left(1-\dfrac{1}{2}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+\dfrac{1}{2^4}\right)}\)

\(=\dfrac{\left(\dfrac{2^4+2^3+2^2+2+1}{2^4}\right)}{\left(2^4-2^3+2^2-2+1\right)}\)

\(=\dfrac{\left(2^3+2\right)\left(2+1\right)+1}{2^4}.\dfrac{2^4}{\left(2^3+2\right)\left(2-1\right)}\)

\(=\dfrac{2\left(2^2+1\right)\left(2+1\right)+1}{2\left(2^2+1\right)\left(2-1\right)+1}\)

\(=\dfrac{2.5.3+1}{2.5.1+1}\)

\(=\dfrac{31}{11}\)

\(=2,\left(81\right)\)

Bình luận (0)
MP
10 tháng 6 2018 lúc 14:56

Bài 2:

A= \(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)

=\(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)

=\(\dfrac{1}{1}-\dfrac{1}{101}\)

=\(\dfrac{100}{101}\)

B=\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+\dfrac{1}{13.16}\)

2B=\(2\left(\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{13.16}\right)\)

=\(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{13}-\dfrac{1}{16}\)

=\(\dfrac{1}{1}-\dfrac{1}{16}\)

=\(\dfrac{15}{16}\)

\(\Leftrightarrow\)B=\(\dfrac{\dfrac{15}{16}}{2}\)

=\(\dfrac{15}{32}\)

Bình luận (0)

Các câu hỏi tương tự
HQ
Xem chi tiết
LB
Xem chi tiết
QN
Xem chi tiết
QN
Xem chi tiết
TT
Xem chi tiết
PP
Xem chi tiết
PP
Xem chi tiết
KS
Xem chi tiết
HT
Xem chi tiết