Lời giải:
Xét tam giác $ABC$ có $AB=a;AC=b$ và góc $BAC$ bằng \(\alpha\) là góc nhọn.
Từ $B$ kẻ \(BH\perp AC (H\in AC)\)
Khi đó: \(S_{ABC}=\frac{BH.AC}{2}\) \((1)\)
Xét tam giác vuông tại $H$ là $BAH$ có: \(\sin \alpha=\frac{BH}{AB}\Rightarrow BH=\sin \alpha .AB\) \((2)\)
Từ \((1),(2)\Rightarrow S_{ABC}=\frac{AB.AC.\sin \alpha}{2}=\frac{ab\sin \alpha}{2}\)
Ta có đpcm.