Violympic toán 8

TT

1/ Chứng minh bất đẳng thức
a) 4x^2 + 4x + 5 > 0
b) a^2 + ab + b^2 ≥ 0

2/ Tam giác ABC cân tại A, các phân giác BD và CE (D thuộc AC, E thuộc AB). Chứng minh BEDC là hình thang cân

3/ Tìm số nguyên x, y thỏa mãn 1 + x + x^2 + x^3 = y^3

4/ Giải phương trình: (x^2 - 25/4)^2 = 10x + 1

VT
17 tháng 6 2018 lúc 22:31

1/ a) \(4x^2+4x+5>0\)

<=> \(\left(4x^2+4x+1\right)+4>0\)
<=> \(\left(2x+1\right)^2+4>0\) (bất đẳng thức đúng với mọi x)

b) \(a^2+ab+b^2\)≥ 0

<=> \(2a^2+2ab+2b^2\) ≥ 0

<=> \(\left(a^2+2ab+b^2\right)+a^2+b^2\) ≥ 0

<=> \(\left(a+b\right)^2+a^2+b^{2^{ }}\) ≥ 0 (bất đẳng thức đúng với mọi a,b)

Dấu "=" xảy ra khi a + b = a = b = 0 hay a = b = 0.

2/ A B C D E

[Mình vẽ hình tượng trưng thôi chứ không đúng đâu nhé]

Xét tam giác ABD và tam giác ACE có

Góc A chung

AB = AC (Tam giác ABC cân tại A)

Góc ABD = góc ACE (=góc B/2 = góc C/2)

Suy ra: Tam giác ABD = tam giác ACE (g.c.g)

=> AE = AD (2 cạnh tương ứng)

=> Tam giác AED cân tại A

△ABC cân tại A

=> góc B = (180o - góc A)/2 (1)

△AED cân tại A (cmt)

=> góc AED = (180o - góc A)/2 (2)

Từ (1) và (2) => góc B = góc AED

=> ED //BC

=> Tứ giác BEDC là hình thang

mà góc B = góc C (Tam giác ABC cân tại A)

=> BEDC là hình thang cân.

3/ \(1+x+x^2+x^3=y^3\)

Ta nhận thấy: 1 + x + x2 = \(\left(x+\dfrac{1}{2}\right)^{2^{ }}+\dfrac{3}{4}>0\) với mọi x

nên x3 < 1 + x + x2 + x3 hay x3 < y3 (1)

Xét hiệu (x+2)3 - y3 = (x+2)3 - (1+x+x2+x3) = 5x2 + 11x + 7

= \(5\left(x+\dfrac{11}{10}\right)^{2^{ }}+\dfrac{19}{20}>0\) nên (x+2)3 > y3 (2)

Từ (1) và (2) => x3 < y3 < (x+2)3

=> y3 = (x+1)3 (vì x,y là số nguyên)

hay 1 + x + x2 + x3 = (x+1)3

<=> x2 + x = 0 <=> x(x+1) = 0 <=> x = 0 hoặc x = -1

* Với x = -1 thì y = 1 + (-1) + (-1)2 + (-1)3 = 0

* Với x = 0 thì y = 1 + 0 + 02 + 03 = 1

Vậy Các số nguyên (x;y) cần tìm là (-1;0); (0;1).

4/ \(\left(x^2-\dfrac{25}{4}\right)^2=10x+1\)

<=> \(x^4-\dfrac{25}{2}x^2+\dfrac{625}{16}=10x+1\)

<=> \(x^4-\dfrac{25}{2}x^2-10x+\dfrac{609}{16}=0\)

<=> \(\left(x^4-\dfrac{7}{2}x^3\right)+\left(\dfrac{7}{2}x^3-\dfrac{49}{4}x^2\right)-\left(\dfrac{1}{4}x^2-\dfrac{7}{8}x\right)-\left(\dfrac{87}{8}x+\dfrac{609}{16}\right)=0\)

<=> \(\left(x-\dfrac{7}{2}\right)\left(x^3+\dfrac{7}{2}x^2-\dfrac{1}{4}x-\dfrac{87}{8}\right)=0\)

<=> \(\left(x-\dfrac{7}{2}\right)\left[\left(x^3-\dfrac{3}{2}x^2\right)+\left(5x^2-\dfrac{15}{2}x\right)+\left(\dfrac{29}{4}x-\dfrac{87}{8}\right)\right]=0\)

<=> \(\left(x-\dfrac{7}{2}\right)\left(x-\dfrac{3}{2}\right)\left(x^2+5x+\dfrac{29}{4}\right)=0\)

<=> \(x-\dfrac{7}{2}=0\) hoặc \(x-\dfrac{3}{2}=0\) (vì \(x^2+5x+\dfrac{29}{4}\)≠ 0)

<=> x = 3.5 hoặc x = 1.5.

Bình luận (0)

Các câu hỏi tương tự
LC
Xem chi tiết
DV
Xem chi tiết
LN
Xem chi tiết
NN
Xem chi tiết
PN
Xem chi tiết
QN
Xem chi tiết
DA
Xem chi tiết
NN
Xem chi tiết
TM
Xem chi tiết