Violympic toán 9

NL

1. Cho x,y ∈ Z. Cm x2+y2 ⋮ 3 ⇔ x ⋮ 3 và y ⋮ 3

2. Cho 0 < a <1, 0 < b <1, 0 < c <1. Cmr trong các bất đẳng thức sau có ít nhất 1 bất đẳng thức sai

a(1-b) ≥ 1/4

b(1-c) ≥ 1/4

c(1-a) ≥ 1/4

3. Cho n ∈ N Cm 2n-1 và 2n+1 không đồng thời là số nguyên tố

4. Cho a,b,c ∈ R thỏa mãn \(\left\{{}\begin{matrix}a+b+c>0\\ab+bc+ac>0\\abc>o\end{matrix}\right.\) CM a>0, b>0, c>0

AH
11 tháng 9 2018 lúc 23:10

Bài 1:

Chiều thuận:\(x^2+y^2\vdots 3\Rightarrow x\vdots 3; y\vdots 3\)

Giả sử cả \(x\not\vdots 3, y\not\vdots 3\). Ta biết rằng một số chính phương khi chia 3 thì dư $0$ hoặc $1$.

Do đó nếu \(x\not\vdots 3, y\not\vdots 3\Rightarrow x^2\equiv 1\pmod 3; y^2\equiv 1\pmod 3\)

\(\Rightarrow x^2+y^2\equiv 2\pmod 3\) (trái với giả thiết )

Suy ra ít nhất một trong 2 số $x,y$ chia hết cho $3$

Giả sử $x\vdots 3$ \(\Rightarrow x^2\vdots 3\). Mà \(x^2+y^2\vdots 3\Rightarrow y^2\vdots 3\Rightarrow y\vdots 3\)

Vậy \(x^2+y^2\vdots 3\Rightarrow x,y\vdots 3\)

Chiều đảo:

Ta thấy với \(x\vdots 3, y\vdots 3\Rightarrow x^2\vdots 3; y^2\vdots 3\Rightarrow x^2+y^2\vdots 3\) (đpcm)

Vậy ta có đpcm.

Bình luận (0)
AH
11 tháng 9 2018 lúc 23:27

Bài 2: > chứ không \(\geq \) nhé, vì khi \(a=b=c=\frac{1}{2}\) thì cả 3 BĐT đều đúng.

Phản chứng, giả sử cả 3 BĐT đều đúng

\(\Rightarrow \left\{\begin{matrix} a(1-b)> \frac{1}{4}\\ b(1-c)> \frac{1}{4}\\ c(1-a)>\frac{1}{4}\end{matrix}\right.\)

\(\Rightarrow a(1-a)b(1-b)c(1-c)> \frac{1}{4^3}(*)\)

Theo BĐT AM-GM thì:

\(a(1-a)\leq \left(\frac{a+1-a}{2}\right)^2=\frac{1}{4}\)

\(b(1-b)\leq \left(\frac{b+1-b}{2}\right)^2=\frac{1}{4}\)

\(c(1-c)\leq \left(\frac{c+1-c}{2}\right)^2=\frac{1}{4}\)

\(\Rightarrow abc(1-a)(1-b)(1-c)\leq \frac{1}{4^3}\) (mâu thuẫn với $(*)$)

Do đó điều giả sử là sai, tức là trong 3 BĐT trên có ít nhất một BĐT đúng.

Bình luận (0)
AH
11 tháng 9 2018 lúc 23:33

Bài 3:

$n=2$ thỏa mãn 2 số trên đều là nguyên tố nhé.

Đặt \(\left\{\begin{matrix} 2^n-1=p\\ 2^n+1=q\end{matrix}\right.\) \(\Rightarrow pq=(2^n-1)(2^n+1)=2^{2n}-1=4^n-1\)

\(4\equiv 1\pmod 3\Rightarrow 4^n\equiv 1^n\equiv 1\pmod 3\)

\(\Rightarrow 4^n-1\vdots 3\Rightarrow pq\vdots 3\Rightarrow \left[\begin{matrix} p\vdots 3\\ q\vdots 3\end{matrix}\right.\)

Nếu $p\vdots 3$ thì $p=3$

\(\Rightarrow 2^n-1=3\Rightarrow 2^n=4\Rightarrow n=2\)

\(\Rightarrow 2^n+1=2^2+1=5\in\mathbb{P}\) (thỏa mãn)

Nếu $q\vdots 3$ thì $q=3$ \(\Rightarrow 2^n+1=3\Rightarrow 2^n=2\Rightarrow n=1\)

\(\Rightarrow p=2^n-1=2^1-1=1\not\in\mathbb{P}\) (loại trừ)

Vậy $n=2$ vẫn thỏa mãn 2 số trên đều là số nguyên tố nhé.

Bình luận (0)
AH
11 tháng 9 2018 lúc 23:46

Bài 4:

\(abc>0\) nên xảy ra 2 TH

TH1: Cả 3 số đều dương, hoàn toàn t/m với 2 điều kiện còn lại (đpcm)

TH2: 2 số âm, 1 số dương.

Không mất tổng quát, giả sử \(a<0 ; b< 0; c> 0\)

\(\Rightarrow a+b< 0\)

Khi đó: \(a+b+c>0\Rightarrow -(a+b)< c\)

\(\Rightarrow -(a+b)^2> c(a+b) \) (nhân 2 vế với số âm thì BĐT đổi dấu)

\(\Rightarrow ab-(a+b)^2> ab+bc+ac\)

\(ab-(a+b)^2=-a^2-b^2-ab=-[(a+\frac{b}{2})^2+\frac{3}{4}b^2]< 0, \forall a,b< 0\)

\(\Rightarrow ab+bc+ac< ab-(a+b)^2< 0\) (vô lý)

Vậy chỉ có TH1 xảy ra, tức là $a,b,c> 0$

Bình luận (0)

Các câu hỏi tương tự
BL
Xem chi tiết
BL
Xem chi tiết
BL
Xem chi tiết
BL
Xem chi tiết
BL
Xem chi tiết
H24
Xem chi tiết
BL
Xem chi tiết
H24
Xem chi tiết
VH
Xem chi tiết