§3. Hàm số bậc hai

H24

1) Cho phương trình: \(x^2+\frac{1}{x^2}+4\left(x+\frac{1}{x}\right)-3-2m=0\). Tìm m để phương trình có nghiệm.
2) Cho phương trình: \(x^2-2x+3-\left(m+1\right)\sqrt{x^2-2x+5}-m=0\). Tìm m để phương trình có nghiệm.

H24
15 tháng 10 2020 lúc 23:20

@Akai Haruma @Nguyễn Việt Lâm
cíu giúp em với ạaaa

Bình luận (0)
 Khách vãng lai đã xóa
NL
11 tháng 11 2020 lúc 20:27

1.

Đặt \(x+\frac{1}{x}=t\Rightarrow\left|t\right|\ge2\)

Pt trở thành: \(t^2-2+4t-3-2m=0\)

\(\Leftrightarrow t^2+4t-5=2m\)

Xét \(f\left(t\right)=t^2+4t-5\) trên \((-\infty;-2]\cup[2;+\infty)\)

\(-\frac{b}{2a}=-2\) ; \(f\left(-2\right)=-9\) ; \(f\left(2\right)=7\)

\(\Rightarrow f\left(x\right)\ge-9\Rightarrow\) pt có nghiệm khi và chỉ khi \(2m\ge-9\Leftrightarrow m\ge-\frac{9}{2}\)

2.

Đặt \(\sqrt{x^2-2x+5}=\sqrt{\left(x-1\right)^2+4}=t\Rightarrow t\ge2\)

\(t^2-2-\left(m+1\right)t-m=0\)

\(\Leftrightarrow t^2-t-2-m\left(t+1\right)=0\)

\(\Leftrightarrow\left(t+1\right)\left(t-2\right)-m\left(t+1\right)=0\)

\(\Leftrightarrow\left(t+1\right)\left(t-m-2\right)=0\)

\(\Leftrightarrow m=t+2\ge4\)

Vậy \(m\ge4\) thì pt có nghiệm

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
HN
Xem chi tiết
LD
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết
LD
Xem chi tiết
MV
Xem chi tiết
H24
Xem chi tiết
HL
Xem chi tiết
TN
Xem chi tiết