Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

NS

1) Cho phuong trinh: \(\dfrac{1}{2}\)cos4x + \(\dfrac{4tanx}{1+tan^2x}\) = m. De phuong trinh vo nghiem, cac gia tri cua tham so m phai thoa man dieu kien

NL
3 tháng 10 2021 lúc 11:21

ĐKXĐ: \(cosx\ne0\Rightarrow x\ne\dfrac{\pi}{2}+k\pi\)

\(\dfrac{1}{2}cos4x+\dfrac{4sinx}{cosx}.cos^2x=m\)

\(\Rightarrow\dfrac{1}{2}cos4x+2sin2x=m\)

\(\Rightarrow\dfrac{1}{2}\left(1-2sin^22x\right)+2sin2x=m\)

\(\Rightarrow-sin^22x+2sin2x+\dfrac{1}{2}=m\) 

Đặt \(sin2x=t\in\left[-1;1\right]\Rightarrow-t^2+2t+\dfrac{1}{2}=m\)

Xét hàm \(f\left(t\right)=-t^2+2t+\dfrac{1}{2}\) trên \(\left[-1;1\right]\)

\(-\dfrac{b}{2a}=1\) ; \(f\left(-1\right)=-\dfrac{5}{2}\) ; \(f\left(1\right)=\dfrac{3}{2}\) \(\Rightarrow-\dfrac{5}{2}\le f\left(t\right)\le\dfrac{3}{2}\)

\(\Rightarrow\) Phương trình đã cho vô nghiệm khi \(\left[{}\begin{matrix}m< -\dfrac{5}{2}\\m>\dfrac{3}{2}\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
NS
Xem chi tiết
TM
Xem chi tiết
TM
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết
LC
Xem chi tiết
DN
Xem chi tiết
NC
Xem chi tiết
DT
Xem chi tiết