Tam giác đồng dạng

KH
1. Cho hình thang ABCD (AB // CD). Hai đường chéo AC và BD cắt nhau tại O. Đường thẳng a qua O và song song với đáy của hình thang cắt các cạnh AD, BC theo thứ tự tại E và F . Chứng minh rằng OE = OF
HS
14 tháng 3 2021 lúc 15:59

Bạn tự vẽ hình nhé

Xét \(\Delta ACD\) có OE // CD(gt)

=> \(\dfrac{OE}{DC}=\dfrac{AO}{AC}\left(1\right)\)

Xét \(\Delta BCD\) có OF // CD (gt)

=> \(\dfrac{OF}{DC}=\dfrac{BF}{FC}\left(2\right)\)

Mặt khác AB // CD nên  \(\dfrac{AO}{AC}=\dfrac{BF}{FC}\left(3\right)\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\)

=> \(\dfrac{OE}{DC}=\dfrac{OF}{DC}\) => OE = OF

 

Bình luận (0)

Các câu hỏi tương tự
KH
Xem chi tiết
CN
Xem chi tiết
JJ
Xem chi tiết
NP
Xem chi tiết
NT
Xem chi tiết
QM
Xem chi tiết
ND
Xem chi tiết
LV
Xem chi tiết
VQ
Xem chi tiết