Ôn tập toán 7

TN

1. Cho đơn thức P= (-1/2x2y3)2.(9/4x2y4)

a. Thu gọn đơn thức P rồi xác định bậc, hệ số và phần biến của đơn thức P ?

b. Tính giá trị của P tại x = -1 và y = 1

2. Cho các đa thức: f(x)= x5-3x2+x3-x2-2x+5

g(x)= x5-x4+x2-3x+x2+1

a. Thu gọn và sắp xếp đa thức f(x) và g(x) theo lũy thừ giảm dần.

b. Tính h(x) = f(x) + g(x)

3. Tìm GTNN của biểu thức: A = \(\left|x-2010\right|+\left|x-2012\right|+\left|x-2014\right|\)

4. Tìm GTLN của biểu thức B = \(\frac{x^2+y^2+7}{x^2+y^2+2}\)

5. Tìm các số nguyên tố x,y sao cho: 51x + 26y = 2000

6. Tìm x,y \(\varepsilon\) N biết: 25 - y2 = 8(x - 2009)2

NT
13 tháng 2 2017 lúc 11:50

Bài 4:

Ta có: \(B=\frac{x^2+y^2+7}{x^2+y^2+2}=1+\frac{5}{x^2+y^2+2}\)

\(x^2+y^2+2>0\) nên để \(\frac{5}{x^2+y^2+2}\) lớn nhất thì \(x^2+y^2+2\) nhỏ nhất.

Lại có:

\(\left\{\begin{matrix}x^2\ge0\\y^2\ge0\end{matrix}\right.\Rightarrow x^2+y^2\ge0\Rightarrow x^2+y^2+2\ge2\)

\(\Rightarrow\frac{5}{x^2+y^2+2}\le\frac{5}{2}\)

\(\Rightarrow1+\frac{5}{x^2+y^2+2}\le1+2,5\)

\(\Rightarrow B=\frac{x^2+y^2+7}{x^2+y^2+2}\le3,5\)

Vậy \(MAX_B=3,5\) khi \(x=y=0\)

Bình luận (0)
TH
13 tháng 2 2017 lúc 12:44

5)Ta có 26y chẵn, 2000 chẵn \(\Rightarrow51x\)chẵn \(\Rightarrow x⋮2\)

Mà x nguyên tố \(\Rightarrow x=2\)

Thay x=2 vào ta có

51.2+26y=2000

\(\Rightarrow102+26y=2000\)

\(\Rightarrow26y=1898\)

\(\Rightarrow y=73\)

Vậy \(x=2,y=73\)

Bình luận (0)

Các câu hỏi tương tự
HA
Xem chi tiết
QS
Xem chi tiết
KH
Xem chi tiết
KH
Xem chi tiết
QS
Xem chi tiết
QS
Xem chi tiết
NA
Xem chi tiết
CS
Xem chi tiết
NL
Xem chi tiết