\(A=\left(\dfrac{\sqrt{x}}{x-\sqrt{x}}-\dfrac{2}{x\sqrt{x}-x+\sqrt{x}-1}\right):\left(1-\dfrac{\sqrt{x}}{x+1}\right)\left(x>0,x\ne1\right)\)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{2}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right):\dfrac{x-\sqrt{x}+1}{x+1}\)
\(=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right).\dfrac{x+1}{x-\sqrt{x}+1}\)
\(=\dfrac{x+1-2}{\left(\sqrt{x}-1\right)\left(x+1\right)}.\dfrac{x+1}{x-\sqrt{x}+1}=\dfrac{x-1}{\left(\sqrt{x}-1\right)\left(x+1\right)}.\dfrac{x+1}{x-\sqrt{x}+1}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+1\right)}.\dfrac{x+1}{x-\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{x-\sqrt{x}+1}\)
Lời giải:
ĐKXĐ: $x>0; x\neq 1$
\(A=\left[\frac{\sqrt{x}}{\sqrt{x}(\sqrt{x}-1)}-\frac{2}{(\sqrt{x}-1)(x+1)}\right]:\frac{x-\sqrt{x}+1}{x+1}\)
\(=\left[\frac{1}{\sqrt{x}-1}-\frac{2}{(\sqrt{x}-1)(x+1)}\right].\frac{x+1}{x-\sqrt{x}+1}=\frac{x+1-2}{(\sqrt{x}-1)(x+1)}.\frac{x+1}{x-\sqrt{x}+1}=\frac{x-1}{(\sqrt{x}-1)(x-\sqrt{x}+1)}=\frac{\sqrt{x}+1}{x-\sqrt{x}+1}\)
Ta có: \(A=\left(\dfrac{\sqrt{x}}{x-\sqrt{x}}-\dfrac{2}{x\sqrt{x}-x+\sqrt{x}-1}\right):\left(1-\dfrac{\sqrt{x}}{x+1}\right)\)
\(=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{\left(\sqrt{x}-1\right)\left(x+1\right)}\right):\left(\dfrac{x-\sqrt{x}+1}{x+1}\right)\)
\(=\dfrac{x-1}{\left(\sqrt{x}-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{x-\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}+1}{x-\sqrt{x}+1}\)