Đại số lớp 7

PL

1, a, Tính (2 cách)

A=1x2+2x3+3x4+....+nx(n+1)

b, Nêu cách tính tổng quát

c, áp dụng tính

B=1x2x3+2x3x4+....+(n-1)x(n+1)

giúp mình với đang cần gấp

TV
17 tháng 6 2017 lúc 9:21

a)

\(A=1.2+2.3+3.4+...+n.\left(n+1\right)\)

\(3A=1.2.3+2.3.3+3.4.3+...+n.\left(n+1\right).3\)

\(3A=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n.\left(n+1\right).\left[\left(n+2\right)-\left(n-1\right)\right]\)

\(3A=(1.2.3-0.1.2)+\left(2.3.4-1.2.3\right)+\left(3.4.5-2.3.5\right)+...+\left[n.\left(n+1\right).\left(n+2\right)-\left(n-1\right).n.\left(n+1\right)\right]\)\(3A=-0.1.2+n.\left(n+1\right).\left(n+2\right)\)

\(3A=n.\left(n+1\right).\left(n+2\right)\)

\(A=\dfrac{n.\left(n+1\right).\left(n+2\right)}{3}\)

Bình luận (0)
TV
17 tháng 6 2017 lúc 9:45

c)

\(B=1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\)

\(4B=1.2.3.4+2.3.4.4+3.4.5.4+...+\left(n-1\right).n.\left(n+2\right).4\)

\(4B=1.2.3.4+2.3.4.\left(5-1\right)+3.4.5.\left(6-2\right)+...+\left(n-1\right).n.\left(n+1\right).\left[\left(n+2\right)-\left(n-2\right)\right]\)\(4B=1.2.3.4+\left(2.3.4.5-1.2.3.4\right)+\left(3.4.5.6-2.3.4.5\right)+...+\left[\left(n-1\right).n.\left(n+1\right).\left(n+2\right)-\left(n-1\right).n.\left(n+1\right).\left(n-2\right)\right]\)\(4B=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\\ B=\dfrac{\left(n-1\right).n.\left(n+1\right).\left(n+2\right)}{4}\)

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
H3
Xem chi tiết
TV
Xem chi tiết
NA
Xem chi tiết
NT
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
ZD
Xem chi tiết
ZD
Xem chi tiết