§2. Giá trị lượng giác của một cung

NQ

1, a sin(B-C) + b sin(C-A) + c sin(A-B)=0 2, sin2 A + sin2 B + sin2 C = 2+2cosAcosBcosC 3, r= 4RsinA/2 sin B/2 sin C/2

NL
19 tháng 5 2019 lúc 15:56

Câu 1:

\(a.sin\left(B-C\right)=a.sinBcosC-a.cosB.sinC\)

\(bsin\left(C-A\right)=bsinC.cosA-bcosC.sinA\)

\(csin\left(A-B\right)=csinAcosB-csinB.cosA\)

Cộng lại:

\(VT=cosA\left(bsinC-c.sinB\right)+cosB\left(c.sinA-a.sinC\right)+cosC\left(a.sinB-bsinA\right)\)

\(=cosA\left(\frac{b.c}{2R}-\frac{bc}{2R}\right)+cosB\left(\frac{ac}{2R}-\frac{ac}{2R}\right)+cosC\left(\frac{ab}{2R}-\frac{ab}{2R}\right)=0\)

Câu 2:

\(sin^2A+sin^2B+sin^2C=\frac{1}{2}-\frac{1}{2}cos2A+\frac{1}{2}-\frac{1}{2}cos2B+1-cos^2C\)

\(=2-\frac{1}{2}\left(cos2A+cos2B\right)-cosC.cosC\)

\(=2-cos\left(A+B\right)cos\left(A-B\right)+cosC.cos\left(A+B\right)\)

\(=2+cosC.cos\left(A-B\right)+cosC.cos\left(A+B\right)\)

\(=2+cosC\left[cos\left(A-B\right)+cos\left(A+B\right)\right]\)

\(=2+2cosA.cosB.cosC\)

Bình luận (0)
NL
19 tháng 5 2019 lúc 16:06

Câu 3:

Ta có \(sin^2\frac{A}{2}=\frac{1-cosA}{2}=\frac{1-\frac{b^2+c^2-a^2}{2bc}}{2}=\frac{a^2-b^2-c^2+2bc}{4bc}=\frac{a^2-\left(b-c\right)^2}{4bc}\)

\(=\frac{\left(a+b-c\right)\left(a+c-b\right)}{4bc}=\frac{\left(p-c\right)\left(p-b\right)}{bc}\Rightarrow sin\frac{A}{2}=\sqrt{\frac{\left(p-b\right)\left(p-c\right)}{bc}}\)

Tương tự ta có \(sin\frac{B}{2}=\sqrt{\frac{\left(p-a\right)\left(p-c\right)}{ac}}\) ; \(sin\frac{C}{2}=\sqrt{\frac{\left(p-a\right)\left(p-b\right)}{ab}}\)

\(\Rightarrow4Rsin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=4\left(\frac{abc}{4S}\right)\sqrt{\frac{\left(p-a\right)^2\left(p-b\right)^2\left(p-c\right)^2}{a^2b^2c^2}}\)

\(=\frac{abc.\left(p-a\right)\left(p-b\right)\left(p-c\right)}{S.abc}=\frac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{S}=\frac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}}=\sqrt{\frac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{p}}=r\)

Bình luận (0)

Các câu hỏi tương tự
NQ
Xem chi tiết
NT
Xem chi tiết
LT
Xem chi tiết
DV
Xem chi tiết
HV
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết
JV
Xem chi tiết
NH
Xem chi tiết