Violympic toán 9

DT
NL
3 tháng 11 2021 lúc 18:52

ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{\left(x-1\right)\left(x^3+x^2+x+1\right)}\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x^3+x^2+x+1\right)}-\sqrt{x-1}+1-\sqrt{x^3+x^2+x+1}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x^3+x^2+x+1}-1\right)-\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x^3+x^2+x+1}-1\right)=0\) (1)

Do \(x\ge1\Rightarrow\sqrt{x^3+x^2+x+1}\ge\sqrt{1+1+1+1}=2\)

\(\Rightarrow\sqrt{x^3+x^2+x+1}-1>0\)

Do đó (1) tương đương:

\(\sqrt{x-1}-1=0\Rightarrow x=2\)

Bình luận (0)