Xét hình bs 4 :
Tìm đẳng thức đúng :
(A) \(tg\alpha=\sin\alpha+\cos\alpha\) (B) \(tg\alpha=\sin\alpha-\cos\alpha\)
(C) \(tg\alpha=\sin\alpha.\cos\alpha\) (D) \(tg\alpha=\dfrac{\sin\alpha}{\cos\alpha}\)
Xét hình bs 4 :
Tìm đẳng thức đúng :
(A) \(tg\alpha=\sin\alpha+\cos\alpha\) (B) \(tg\alpha=\sin\alpha-\cos\alpha\)
(C) \(tg\alpha=\sin\alpha.\cos\alpha\) (D) \(tg\alpha=\dfrac{\sin\alpha}{\cos\alpha}\)
Đường cao MQ của tam giác vuông MNP chia cạnh huyền NP thành hai đoạn NQ = 3, PQ = 6. Hãy so sánh cotg N và cotg P. Tỉ số nào lớn hơn và lớn hơn bao nhiêu lần ?
lớn hơn 2 lần
Cho \(\sin\alpha=\dfrac{1}{2}\). Hãy tìm \(\cos\alpha,tg\alpha,cotg\alpha;\left(0^0< \alpha< 90^0\right)\) ?
Dựng góc nhọn \(\alpha\), biết :
a) \(\sin\alpha=\dfrac{2}{3}\)
b) \(\cos\alpha=0,6\)
c) \(tg\alpha=\dfrac{3}{4}\)
d) \(cotg\alpha=\dfrac{3}{2}\)
Đường cao BD của tam giác nhọn ABC bằng 6; đoạn thẳng AD bằng 5
a) Tính diện tích tam giác ABD
b) Tính AC, dùng các thông tin dưới đây nếu cần :
\(\sin C=\dfrac{3}{5};\cos C=\dfrac{4}{5};tgC=\dfrac{3}{4}\)
Vẽ một tam giác vuông có một góc nhọn \(34^0\) rồi viết các tỉ số lượng giác của góc \(34^0\) ?
Hãy viết các tỉ số lượng giác sau thành tỉ số lượng giác của các góc nhỏ hơn \(45^0\):
\(\sin60^0;\cos75^0;\sin52^030';cotg82^0;tg80^0\)
Vận dụng định lý về tỉ số lượng giác của hai góc phụ nhau ta có:
sin60° = cos(90° – 60°) = cos30°
Tương tự:
cos75° = sin(90° – 75°) = sin 15°
sin52°30′ = cos(90° – 52°30′) = 38°30′
cotg82° = tg8°; tg80° = cotg10°
Trả lời bởi Nhật LinhCho tam giác vuông có một góc \(60^0\) và cạnh huyền có độ dài là 8. Hãy tìm độ dài của cạnh đối diện với góc \(60^0\)
Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Tính sin B, sin C trong mỗi trường hợp sau (làm tròn đến chữ số thập phân thứ tư ), biết rằng :
a) AB = 13; BH = 5
b) BH = 3 ; CH = 4
a)
xét tam giác ABH vuông tại H có:
\(AH^2=AB^2-BH^2\Rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{13^2-5^2}=12\)
theo tỉ lệ thức trong tam giác vuông ABC có:
\(AH^2=BH.CH\Rightarrow HC=\frac{AH^2}{BH}=\frac{12^2}{5}=\frac{144}{5}=28,8\)
xét tam giác vuông AHC có:
\(AC^2=AH^2+HC^2\Rightarrow AC=\sqrt{AH^2+HC^2}=\sqrt{12^2+28,8^2}=\frac{156}{5}=31,2\)
vậy : \(\sin B=\frac{AH}{AB}=\frac{12}{13}\)
\(\sin C=\frac{AH}{AC}=\frac{12}{31,2}=\frac{5}{13}\)
b)
theo tỉ số lượng giác trong tam giác ABC có:
\(AH^2=BH.CH\Rightarrow AH=\sqrt{BH.CH}=\sqrt{3.4}=2\sqrt{3}\)
xét tam giác vuông ABH có:
\(AB^2=AH^2+BH^2\Rightarrow AB=\sqrt{AH^2+BH^2}=\sqrt{\left(2\sqrt{3}\right)^2+3^2}=\sqrt{21}\)
theo hệ thức lượng trong tam giác vuông ABC có:
\(AC^2=BC.HC\Rightarrow AC=\sqrt{BC.HC}=\sqrt{7.4}=2\sqrt{7}\)
Vậy : \(\sin B=\frac{AH}{AB}=\frac{2\sqrt{3}}{\sqrt{21}}=\frac{2\sqrt{7}}{7}\)
\(\sin C=\frac{AH}{AC}=\frac{2\sqrt{3}}{2\sqrt{7}}=\frac{\sqrt{21}}{7}\)
Trả lời bởi Hiệu diệu phương
Xét hình bs 4 :
Tìm đẳng thức đúng :
(A) \(\sin\alpha=\sin\beta\) (B) \(\sin\alpha=\cos\beta\) (C) \(\sin\alpha=tg\beta\) (D) \(\sin\alpha=cotg\beta\)
Chọn D
Trả lời bởi Nguyễn Lê Phước Thịnh