Tính tích: \(\left( { - \dfrac{1}{2}xy} \right).\left( {8{{\rm{x}}^2} - 5{\rm{x}}y + 2{y^2}} \right)\).
Tính tích: \(\left( { - \dfrac{1}{2}xy} \right).\left( {8{{\rm{x}}^2} - 5{\rm{x}}y + 2{y^2}} \right)\).
a) Tính tích: \(\left( {x + 1} \right).\left( {{x^2} - x + 1} \right)\)
b) Nêu quy tắc nhân hai đa thức trong trường hợp một biến.
a) Ta có:
\(\begin{array}{l}\left( {x + 1} \right).\left( {{x^2} - x + 1} \right)\\ = {x^3} - {x^2} + x + {x^2} - x + 1\\ = {x^3} + \left( {{x^2} - {x^2}} \right) + \left( {x - x} \right) + 1 = {x^3} + 1\end{array}\)
b) Quy tắc nhân hai đa thức trong trường hợp một biến: ta lấy đơn thức của đa thức này nhân với từng đơn thức của đa thức kia rồi cộng các kết quả với nhau.
Trả lời bởi Hà Quang MinhVới ba đa thức: \(A = {x^2} - 2{\rm{x}}y + {y^2};B = 2{{\rm{x}}^2} - {y^2};C = {x^2} - 3{\rm{x}}y\)(ở trong ví dụ 3). Hãy tính:
a) B – C
b) (B – C) + A
a) Ta có:
\(\begin{array}{l}B - C = \left( {2{{\rm{x}}^2} - {y^2}} \right) - \left( {{x^2} - 3{\rm{x}}y} \right)\\B - C = 2{{\rm{x}}^2} - {y^2} - {x^2} + 3{\rm{x}}y\\B - C = \left( {2{{\rm{x}}^2} - {x^2}} \right) + 3{\rm{x}}y - {y^2} = {x^2} + 3{\rm{x}}y - {y^2}\end{array}\)
b) Ta có:
\(\begin{array}{l}(B - C) + A = {\rm{[}}\left( {2{{\rm{x}}^2} - {y^2}} \right) - \left( {{x^2} - 3{\rm{x}}y} \right){\rm{] + (}}{{\rm{x}}^2} - 2{\rm{x}}y + {y^2})\\(B - C) + A = {x^2} + 3{\rm{x}}y - {y^2} + {x^2} - 2{\rm{x}}y + {y^2}\\(B - C) + A = \left( {{x^2} + {x^2}} \right) + \left( {3{\rm{x}}y - 2{\rm{x}}y} \right) + \left( {{y^2} - {y^2}} \right)\\(B - C) + A = 2{{\rm{x}}^2} + xy\end{array}\)
Trả lời bởi Hà Quang MinhTính tích của hai đơn thức: \({x^3}{y^7}\) và \( - 2{{\rm{x}}^5}{y^3}\).
a) \(\left( {11{{\rm{x}}^3}} \right).\left( {{x^2} - x + 1} \right) = \left( {11{{\rm{x}}^3}} \right).\left( {{x^2}} \right) + \left( {11{{\rm{x}}^3}} \right).\left( { - x} \right) + \left( {11{{\rm{x}}^3}} \right).1 = 11{{\rm{x}}^5} - 11{{\rm{x}}^4} + 11{{\rm{x}}^3}\)
b) Quy tắc nhân đơn thức với đa thức trong trường hợp một biến: ta lấy đơn thức nhân với từng đơn thức của đa thức rồi cộng các kết quả với nhau.
Trả lời bởi Hà Quang Minha) Tính tích: \(3{{\rm{x}}^2}.8{{\rm{x}}^4}\)
b) Nêu quy tắc nhân hai đơn thức cùng một biến
a) \(3{{\rm{x}}^2}.8{{\rm{x}}^4} = \left( {3.8} \right).\left( {{x^2}.{x^4}} \right) = 24{{\rm{x}}^6}\)
b) Quy tắc nhân hai đơn thức cùng một biến: ta nhân các hệ số với nhau và nhân các phần biến với nhau.
Trả lời bởi Hà Quang MinhCho hai đa thức: \(P = {x^2} + 2{\rm{x}}y + {y^2}\) và \(Q = {x^2} - 2{\rm{x}}y + {y^2}\)
a) Viết hiệu P – Q theo hàng ngang, trong đó đa thức Q được đặt trong dấu ngoặc
b) Sau khi bỏ dấu ngoặc và đổi dấu mỗi đơn thức của đa thức Q, nhóm các đơn thức đồng dạng với nhau.
c) Tính hiệu P – Q bằng cách thực hiện phép tính trong từng nhóm .
a)
\(P - Q = ({x^2} + 2{\rm{x}}y + {y^2}) - \left( {{x^2} - 2{\rm{x}}y + {y^2}} \right)\)
b)
\(\begin{array}{l}P - Q = ({x^2} + 2{\rm{x}}y + {y^2}) - \left( {{x^2} - 2{\rm{x}}y + {y^2}} \right)\\P - Q = {x^2} + 2{\rm{x}}y + {y^2} - {x^2} + 2{\rm{x}}y - {y^2}\\P - Q = \left( {{x^2} - {x^2}} \right) + \left( {2{\rm{x}}y + 2{\rm{x}}y} \right) + \left( {{y^2} - {y^2}} \right)\end{array}\)
c)
\(\begin{array}{l}P - Q = ({x^2} + 2{\rm{x}}y + {y^2}) - \left( {{x^2} - 2{\rm{x}}y + {y^2}} \right)\\P - Q = {x^2} + 2{\rm{x}}y + {y^2} - {x^2} + 2{\rm{x}}y - {y^2}\\P - Q = \left( {{x^2} - {x^2}} \right) + \left( {2{\rm{x}}y + 2{\rm{x}}y} \right) + \left( {{y^2} - {y^2}} \right)\\P - Q = 4{\rm{x}}y\end{array}\)
Trả lời bởi Hà Quang MinhCho hai đa thức: \(P = {x^2} + 2{\rm{x}}y + {y^2}\) và \(Q = {x^2} - 2{\rm{x}}y + {y^2}\)
a) Viết tổng P + Q theo hàng ngang
b) Nhóm các đơn thức đồng dạng với nhau.
c) Tính tổng P + Q bằng cách thực hiện phép tính trong từng nhóm.
a)
\(\begin{array}{l}P + Q = ({x^2} + 2{\rm{x}}y + {y^2}) + \left( {{x^2} - 2{\rm{x}}y + {y^2}} \right)\\P + Q = {x^2} + 2{\rm{x}}y + {y^2} + {x^2} - 2{\rm{x}}y + {y^2}\end{array}\)
b)
\(\begin{array}{l}P + Q = ({x^2} + 2{\rm{x}}y + {y^2}) + \left( {{x^2} - 2{\rm{x}}y + {y^2}} \right)\\P + Q = {x^2} + 2{\rm{x}}y + {y^2} + {x^2} - 2{\rm{x}}y + {y^2}\\P + Q = \left( {{x^2} + {x^2}} \right) + \left( {2{\rm{x}}y - 2{\rm{x}}y} \right) + \left( {{y^2} + {y^2}} \right)\end{array}\)
c)
\(\begin{array}{l}P + Q = ({x^2} + 2{\rm{x}}y + {y^2}) + \left( {{x^2} - 2{\rm{x}}y + {y^2}} \right)\\P + Q = {x^2} + 2{\rm{x}}y + {y^2} + {x^2} - 2{\rm{x}}y + {y^2}\\P + Q = \left( {{x^2} + {x^2}} \right) + \left( {2{\rm{x}}y - 2{\rm{x}}y} \right) + \left( {{y^2} + {y^2}} \right)\\P + Q = 2{{\rm{x}}^2} + 2{y^2}\end{array}\)
Trả lời bởi Hà Quang MinhCác phép tính với đa thức nhiều biến thực hiện như thế nào?
Các phép tính với đa thức nhiều biến thực hiện như các phép tính trong đa thức một biến.
Trả lời bởi Hà Quang MinhTính tổng hai đa thức: \(M = {x^3} + {y^3}\) và \(N = {x^3} - {y^3}\)
Ta có:
\(\begin{array}{l}M + N = ({x^3} + {y^3}) + ({x^3} - {y^3})\\M + N = {x^3} + {y^3} + {x^3} - {y^3}\\M + N = \left( {{x^3} + {x^3}} \right) + \left( {{y^3} - {y^3}} \right) = 2{{\rm{x}}^3}\end{array}\)
Trả lời bởi Hà Quang MinhTính tích của hai đơn thức: \({x^3}{y^7}\) và \( - 2{{\rm{x}}^5}{y^3}\).
Ta có: \(\left( {{x^3}{y^7}} \right).\left( { - 2{{\rm{x}}^5}{y^3}} \right) = \left( { - 2} \right).\left( {{x^3}.{x^5}} \right).\left( {{y^7}.{y^3}} \right) = - 2{{\rm{x}}^8}.{y^{10}}\)
Trả lời bởi Hà Quang Minh
a) Ta có:
\(\begin{array}{l}\left( { - \frac{1}{2}xy} \right).\left( {8{x^2} - 5xy + 2{y^2}} \right)\\ = \left( { - \frac{1}{2}xy} \right).8{x^2} + \left( { - \frac{1}{2}xy} \right).\left( { - 5xy} \right) + \left( { - \frac{1}{2}xy} \right)\left( {2{y^2}} \right)\\ = - 4{x^3}y + \frac{5}{2}{x^2}{y^2} - x{y^3}\end{array}\)
b) Quy tắc nhân hâi đa thức trong trường hợp một biến: ta lấy đơn thức của đa thức này nhân với từng đơn thức của đa thức kia rồi cộng các kết quả với nhau.
Trả lời bởi Hà Quang Minh