Tìm x, biết:
a) \({2^x} = 8;\)
b) \({2^x} = \frac{1}{4};\)
c) \({2^x} = \sqrt 2 .\)
Tìm x, biết:
a) \({2^x} = 8;\)
b) \({2^x} = \frac{1}{4};\)
c) \({2^x} = \sqrt 2 .\)
Tính:
a) \({\log _3}3\sqrt 3 ;\)
b) \({\log _{\frac{1}{2}}}32.\)
a: \(=log_3\left(\sqrt{3}\right)^3=log_3\left(3^{\dfrac{1}{2}}\right)^3=log_3\left(3^{\dfrac{3}{2}}\right)=\dfrac{3}{2}\)
b: \(log_{\dfrac{1}{2}}32=log_{\dfrac{1}{2}}\left(\dfrac{1}{2}\right)^{-5}=-5\)
Trả lời bởi Nguyễn Lê Phước ThịnhCho M = 25, N = 23. Tính và so sánh:
a) \({\log _2}\left( {MN} \right)\) và \({\log _2}M + {\log _2}N;\)
b) \({\log _2}\left( {\frac{M}{N}} \right)\) và \({\log _2}M - {\log _2}N.\)
a: \(log_2\left(M\cdot N\right)=log_2\left(2^5\cdot2^3\right)=log_2\left(2^8\right)=8\)
\(log_2M+log_2N=log_22^5+log_22^3=5+3=8\)
=>\(log_2\left(MN\right)=log_2M+log_2N\)
b: \(log_2\left(\dfrac{M}{N}\right)=log_2\left(\dfrac{2^5}{2^3}\right)=log_2\left(2^2\right)=2\)
\(log_2M-log_2N=log_22^5-log_22^3=5-3=2\)
=>\(log_2\left(\dfrac{M}{N}\right)=log_2M-log_2N\)
Trả lời bởi Nguyễn Lê Phước ThịnhRút gọn biểu thức: \(A = {\log _2}\left( {{x^3} - x} \right) - {\log _2}\left( {x + 1} \right) - {\log _2}\left( {x - 1} \right)\,\,\,\,\left( {x > 1} \right).\)
\(A=log_2\left(x^3-x\right)-log_2\left(x+1\right)-log_2\left(x-1\right)\)
\(=log_2\left(\dfrac{x^3-x}{x+1}\right)-log_2\left(x-1\right)\)
\(=log_2\left(\dfrac{x\left(x-1\right)\left(x+1\right)}{x+1}\right)-log_2\left(x-1\right)\)
\(=log_2\left(\dfrac{x\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\right)=log_2x\)
Trả lời bởi Nguyễn Lê Phước ThịnhGiả sử đã cho \({\log _a}M\) và ta muốn tính \({\log _b}M.\) Để tìm mối liên hệ giữa \({\log _a}M\) và \({\log _b}M,\) hãy thực hiện các yêu cầu sau:
a) Đặt \(y = {\log _a}M,\) tính M theo y;
b) Lấy loogarit theo cơ số b cả hai vế của kết quả nhận được trong câu a, từ đó suy ra công thức mới để tính y.
a) \(y = {\log _a}M \Leftrightarrow M = {a^y}\)
b) Lấy loogarit theo cơ số b cả hai vế của \(M = {a^y}\) ta được
\({\log _b}M = {\log _b}{a^y} \Leftrightarrow {\log _b}M = y{\log _b}a \Leftrightarrow y = \frac{{{{\log }_b}M}}{{{{\log }_b}a}}\)
Trả lời bởi Hà Quang MinhKhông dùng máy tính cầm tay, hãy tính \({\log _9}\frac{1}{{27}}.\)
\(log_9\left(\dfrac{1}{27}\right)=log_{3^2}3^{-3}=\dfrac{log_33^{-3}}{log_33^2}=-\dfrac{3}{2}\)
Trả lời bởi Nguyễn Lê Phước ThịnhCô Hương gửi tiết kiệm 100 triệu đồng với lãi suất 6% một năm.
a) Tính số tiền cô Hương thu được (cả vốn lẫn lãi) sau 1 năm, nếu lãi suất được tính theo một trong các thể thức sau:
- Lãi kép kì hạn 12 tháng;
- Lãi kép kì hạn 1 tháng;
- Lãi kép liên tục.
b) Tính thời gian cần thiết để cô Hương thu được số tiền (cả vốn lẫn lãi) là 150 triệu đồng nếu gửi theo thẻ thức lãi kép liên tục (làm tròn kết quả đến chữ số thập phân thứ nhất).
a: nếu lãi kép kì hạn 12 tháng thì số tiền cô Hương có được là:
\(100\cdot\left(1+\dfrac{0.06}{1}\right)^1=106\)(triệu đồng)
Nếu lãi kép kì hạn 1 tháng thì số tiền cô Hương có được là;
\(100\cdot\left(1+\dfrac{0.06}{12}\right)^{12}\simeq106.168\)(triệu đồng)
Nếu lãi kép liên tục thì số tiền cô Hương có được là;
\(100\cdot e^{0.06\cdot1}\simeq106.18\)(triệu đồng)
b: Theo đề, ta có: \(100\cdot e^{0.06\cdot t}=150\)
=>\(e^{0.06\cdot t}=1.5\)
=>\(0.06t=log_e1.5\)
=>\(t\simeq6.76\simeq7\)
=>Sau 7 năm thì cô Hương mới thu được 150 triệu đồng
Trả lời bởi Nguyễn Lê Phước ThịnhTính:
a) \({\log _2}{2^{ - 13}};\)
b) \(\ln {e^{\sqrt 2 }};\)
c) \({\log _8}16 - {\log _8}2;\)
d) \({\log _2}6.{\log _6}8.\)
a: \(log_22^{-13}=-13\)
b: \(lne^{\sqrt{2}}=\sqrt{2}\)
c: \(log_816-log_82=log_8\left(\dfrac{16}{2}\right)=log_88=1\)
c: \(log_26\cdot log_68=log_28=3\)
Trả lời bởi Nguyễn Lê Phước ThịnhViết mỗi biểu thức sau thành lôgarit của một biểu thức (giả thiết các biểu thức đều có nghĩa):
a) \(A = \ln \left( {\frac{x}{{x - 1}}} \right) + \ln \left( {\frac{{x + 1}}{x}} \right) - \ln \left( {{x^2} - 1} \right);\)
b) \(B = 21{\log _3}\sqrt[3]{x} + {\log _3}\left( {9{x^2}} \right) - {\log _3}9.\)
\(a,A=ln\left(\dfrac{x}{x-1}\right)+ln\left(\dfrac{x+1}{x}\right)-ln\left(x^2-1\right)\\ =ln\left(\dfrac{x}{x-1}\cdot\dfrac{x+1}{x}\right)-ln\left(x^2-1\right)\\ =ln\left(\dfrac{x+1}{x-1}\right)-ln\left(x^2-1\right)\\ =ln\left(\dfrac{x+1}{x-1}\cdot\dfrac{1}{x^2-1}\right)\\ =ln\left[\dfrac{1}{\left(x-1\right)^2}\right]\\ =2ln\left(\dfrac{1}{x-1}\right)\)
\(b,21log_3\sqrt[3]{x}+log_3\left(9x^2\right)-log_3\left(9\right)\\ =7log_3\left(x\right)+log_3x^2+log_39-log_39\\ =7log_3x+2log_3x\\ =9log_3x\)
Trả lời bởi Hà Quang MinhViết mỗi biểu thức sau thành lôgarit của một biểu thức (giả thiết các biểu thức đều có nghĩa):
a) \(A = \ln \left( {\frac{x}{{x - 1}}} \right) + \ln \left( {\frac{{x + 1}}{x}} \right) - \ln \left( {{x^2} - 1} \right);\)
b) \(B = 21{\log _3}\sqrt[3]{x} + {\log _3}\left( {9{x^2}} \right) - {\log _3}9.\)
a)
\(\begin{array}{c}A = {\log _{\frac{1}{3}}}5 + 2{\log _9}25 - {\log _{\sqrt 3 }}\frac{1}{5} = {\log _{{3^{ - 1}}}}5 + 2{\log _{{3^2}}}{5^2} - {\log _{{3^{\frac{1}{2}}}}}{5^{ - 1}}\\ = - {\log _3}5 + 2{\log _3}5 + 2{\log _3}5 = 3{\log _3}5\end{array}\)
b) \(B = {\log _a}{M^2} + {\log _{{a^2}}}{M^4} = 2{\log _a}M + \frac{1}{2}.4{\log _a}M = 4{\log _a}M\)
Trả lời bởi Hà Quang Minh
\(a,2^x=8\\ \Leftrightarrow2^x=2^3\\ \Leftrightarrow x=3\\ b,2^x=\dfrac{1}{4}\\ \Leftrightarrow2^x=2^{-2}\\ \Leftrightarrow x=-2\\ c,2^x=\sqrt{2}\\ \Leftrightarrow2^x=2^{\dfrac{1}{2}}\\ \Leftrightarrow x=\dfrac{1}{2}\)
Trả lời bởi Hà Quang Minh