Bài 14. Trường hợp bằng nhau thứ hai và thứ ba của tam giác

QL
Hướng dẫn giải Thảo luận (1)

a)Xét \(\Delta ABD\) và \(\Delta CDB\) có:

AB=CD (gt)

\(\widehat {ABD} = \widehat {CDB}\) (gt)

BD chung

Vậy \(\Delta ABD = \Delta CDB\)(c.g.c)

b)Xét \(\Delta OAD\) và \(\Delta OCB\) có:

AO=CO (gt)

\(\widehat {AOD} = \widehat {COB}\) (đối đỉnh)

OD=OB (gt)

Vậy \(\Delta OAD = \Delta OCB\)(c.g.c)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Xét \(\Delta AOB\) và \(\Delta COD\), có:

AO = CO (gt)

\(\widehat{AOB}=\widehat{COD}\) ( đối đỉnh)

OB = OD (gt)

\(\Rightarrow \Delta AOB = \Delta COD\) ( c.g.c)

Xét \(\Delta AOD\) và \(\Delta COB\), có:

AO = CO (gt)

\(\widehat{AOD}=\widehat{COB}\) ( đối đỉnh)

OD = OB (gt)

\(\Rightarrow \Delta AOD = \Delta COB\) ( c.g.c)

Vậy hai cặp tam giác có chung đỉnh O bằng nhau là: AOB và COD; AOD và COB theo trường hợp cạnh – góc – cạnh.

b)

Do \(\Delta AOD = \Delta COB\) nên: \(\widehat {ADO} = \widehat {CBO}\) (2 góc tương ứng) và AD=BC (2 cạnh tương ứng)

Xét \(\Delta DAB\) và \(\Delta BCD\), có:

AD=BC (cmt)

\(\widehat {ADO} = \widehat {CBO}\) (cmt)

BD chung

Vậy \(\Delta DAB =\Delta BCD\) (c.g.c)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Xét hai tam giác ADE và BCE có:

\(\widehat A = \widehat B\)

AE=BE

\(\widehat {AED} = \widehat {BEC}\)(đối đỉnh)

Vậy \(\Delta ADE = \Delta BCE\)(g.c.g)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a)Xét hai tam giác ABE và DCE có:

\(\widehat {BAE} = \widehat {CDE}\)(so le trong)

AB=CD(gt)

\(\widehat {ABE} = \widehat {DCE}\)(so le trong)

Vậy \(\Delta \)ABE =\(\Delta \)DCE(g.c.g)

b)Xét hai tam giác BEG và CEH có:

\(\widehat {CEH} = \widehat {BEG}\)(đối đỉnh)

CE=BE (do \(\Delta \)ABE =\(\Delta \)DCE)

\(\widehat {ECH} = \widehat {EBG}\)(so le trong)

Suy ra \(\Delta BEG{\rm{  = }}\Delta CEH\)(g.c.g)

Vậy EG=EH (hai cạnh tương ứng).

Trả lời bởi Hà Quang Minh