Bài 14. Trường hợp bằng nhau thứ hai và thứ ba của tam giác

QL

Cho hai đoạn thẳng AC và BD cắt nhau tại điểm O sao cho OA = OC, OB = OD như Hình 4.40.

a) Hãy tìm hai cặp tam giác có chung đỉnh O bằng nhau;

b) Chứng minh rằng \(\Delta \)DAB = \(\Delta \)BCD.

HM
18 tháng 9 2023 lúc 18:24

a) Xét \(\Delta AOB\) và \(\Delta COD\), có:

AO = CO (gt)

\(\widehat{AOB}=\widehat{COD}\) ( đối đỉnh)

OB = OD (gt)

\(\Rightarrow \Delta AOB = \Delta COD\) ( c.g.c)

Xét \(\Delta AOD\) và \(\Delta COB\), có:

AO = CO (gt)

\(\widehat{AOD}=\widehat{COB}\) ( đối đỉnh)

OD = OB (gt)

\(\Rightarrow \Delta AOD = \Delta COB\) ( c.g.c)

Vậy hai cặp tam giác có chung đỉnh O bằng nhau là: AOB và COD; AOD và COB theo trường hợp cạnh – góc – cạnh.

b)

Do \(\Delta AOD = \Delta COB\) nên: \(\widehat {ADO} = \widehat {CBO}\) (2 góc tương ứng) và AD=BC (2 cạnh tương ứng)

Xét \(\Delta DAB\) và \(\Delta BCD\), có:

AD=BC (cmt)

\(\widehat {ADO} = \widehat {CBO}\) (cmt)

BD chung

Vậy \(\Delta DAB =\Delta BCD\) (c.g.c)

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết