Bài 1. Phương trình quy về phương trình bậc nhất một ẩn

HM
Hướng dẫn giải Thảo luận (1)

a. \(\frac{1}{x} = \frac{5}{{3\left( {x + 2} \right)}}\)

Điều kiện xác định: \(x \ne 0\) và \(x \ne  - 2\).

\(\frac{1}{x} = \frac{5}{{3\left( {x + 2} \right)}}\)

\(\begin{array}{l}\frac{{3\left( {x + 2} \right)}}{{3x\left( {x + 2} \right)}} = \frac{5}{{3x\left( {x + 2} \right)}}\\3\left( {x + 2} \right) = 5\\3x + 6 - 5 = 0\\3x + 1 = 0\end{array}\)

\(x = \frac{{ - 1}}{3}\) .

Ta thấy \(x =  - \frac{1}{3}\) thỏa mãn điều kiện xác định của phương trình.

Vậy phương trình đã cho có nghiệm \(x =  - \frac{1}{3}\).

b. \(\frac{x}{{2x - 1}} = \frac{{x - 2}}{{2x + 5}}\)

Điều kiện xác định: \(x \ne \frac{1}{2}\) và \(x \ne  - \frac{5}{2}\).

\(\frac{x}{{2x - 1}} = \frac{{x - 2}}{{2x + 5}}\)

\(\begin{array}{l}\frac{{x\left( {2x + 5} \right)}}{{\left( {2x - 1} \right)\left( {2x + 5} \right)}} = \frac{{\left( {x - 2} \right)\left( {2x - 1} \right)}}{{\left( {2x - 1} \right)\left( {2x + 5} \right)}}\\x\left( {2x + 5} \right) = \left( {x - 2} \right)\left( {2x - 1} \right)\\2{x^2} + 5x = 2{x^2} - x - 4x + 2\\2{x^2} + 5x - 2{x^2} + x + 4x - 2 = 0\\10x - 2 = 0\end{array}\)

\(x = \frac{1}{5}\).

Ta thấy \(x = \frac{1}{5}\) thỏa mãn điều kiện xác định của phương trình.

Vậy \(x = \frac{1}{5}\) là nghiệm của phương trình đã cho.

c. \(\frac{{5x}}{{x - 2}} = 7 + \frac{{10}}{{x - 2}}\)

Điều kiện xác định: \(x \ne 2\).

\(\frac{{5x}}{{x - 2}} = 7 + \frac{{10}}{{x - 2}}\)

\(\begin{array}{l}\frac{{5x}}{{x - 2}} = \frac{{7\left( {x - 2} \right)}}{{x - 2}} + \frac{{10}}{{x - 2}}\\5x = 7x - 14 + 10\\5x - 7x + 14 - 10 = 0\\2x + 4 = 0\end{array}\)

\(x =  - 2\).

Ta thấy \(x =  - 2\) thỏa mãn điều kiện xác định của phương trình.

Vậy \(x =  - 2\) là nghiệm của phương trình đã cho.

d. \(\frac{{{x^2} - 6}}{x} = x + \frac{3}{2}\)

Điều kiện xác định: \(x \ne 0\).

\(\frac{{{x^2} - 6}}{x} = x + \frac{3}{2}\)

\(\begin{array}{l}\frac{{2\left( {{x^2} - 6} \right)}}{{2x}} = \frac{{2{x^2}}}{{2x}} + \frac{{3x}}{{2x}}\\2\left( {{x^2} - 6} \right) = 2{x^2} + 3x\\2{x^2} - 12 = 2{x^2} + 3x\\2{x^2} - 12 - 2{x^2} - 3x = 0\\ - 3x - 12 = 0\end{array}\)

\(x =  - 4\).

Ta thấy \(x =  - 4\) thỏa mãn điều kiện xác định của phương trình.

Vậy \(x =  - 4\) là nghiệm của phương trình đã cho.

Trả lời bởi Hà Quang Minh
HM
Hướng dẫn giải Thảo luận (1)

Gọi tốc độ của dòng nước là: \(x\) (km/h, 0 < x < 27)

Vận tốc cano khi xuôi dòng là:\(27 + x\) (km/h);

Vận tốc cano khi ngược dòng là: \(27 - x\) (km/h);

Thời gian cano khi xuôi dòng là: \(\frac{{40}}{{27 + x}}\) (giờ);

Thời gian cano khi ngược dòng là: \(\frac{{40}}{{27 - x}}\) (giờ).

Do thời gian cả đi và về là 3 giờ nên ta có phương trình:

\(\frac{{40}}{{27 + x}} + \frac{{40}}{{27 - x}} = 3\)

\(\frac{{40\left( {27 - x} \right)}}{{\left( {27 + x} \right)\left( {27 - x} \right)}} + \frac{{40\left( {27 + x} \right)}}{{\left( {27 + x} \right)\left( {27 - x} \right)}} = \frac{{3\left( {27 + x} \right)\left( {27 - x} \right)}}{{\left( {27 + x} \right)\left( {27 - x} \right)}}\)

\(1080 - 40x + 1080 + 40x = 3\left( {729 - {x^2}} \right)\)

\(2160 = 2187 - 3{x^2}\)

\(3{x^2} - 27 = 0\)

\(3{x^2} = 27\)

\({x^2} = 9\)

\(x = 3\) (Thỏa mãn điều kiện).

Vậy tốc độ của dòng nước là 3 (km/h).

 

Trả lời bởi Hà Quang Minh
HM
Hướng dẫn giải Thảo luận (1)

Với chi phí là 420 triệu đồng ta có: \(420 = \frac{{80}}{{100 - p}}\)

\(4200 - 420p = 80\)

\(420p = 4120\)

\(p \approx 9,8\).

Vậy với chi phí là 420 triệu đồng thì doanh nghiệp loại bỏ được 9,8% chất gây ô nhiễm trong khí thải.

Trả lời bởi Hà Quang Minh
HM
Hướng dẫn giải Thảo luận (1)

Gọi giá tiền của mỗi chiếc áo bạn Hoa đã mua là \(x\) (nghìn đồng, \(0 < x < 600\)).

Giá tiền của mỗi chiếc áo bạn Hoa dự định mua là: \(x - 30\) (nghìn đồng)

Số lượng áo bạn Hoa đã mua là: \(\frac{{600}}{x}\) (chiếc)

Số lượng áo bạn Hoa dự định mua là: \(\frac{{600}}{{x - 30}}\) (chiếc)

Do bạn Hoa đã mua được số lượng áo gấp 1,25 lần so với số lượng dự định nên ta có phương trình:

\(1,25.\frac{{600}}{x} = \frac{{600}}{{x - 30}}\)

\(\frac{{750\left( {x - 30} \right)}}{{x\left( {x - 30} \right)}} = \frac{{600x}}{{x\left( {x - 30} \right)}}\)

\(750x - 22500 = 600x\)

\(750x - 600x = 22500\)

\(150x = 22500\)

\(x = 150\)(Thoả mãn điều kiện).

Vậy giá tiền mỗi chiếc áo bạn Hoa đã mua là 150 nghìn đồng.

Trả lời bởi Hà Quang Minh
HM
Hướng dẫn giải Thảo luận (1)

Nửa chu vi của mảnh đất là: \(52:2 = 26\left( m \right)\)

Gọi chiều dài của mảnh đất là \(x\left( {m,2 < x < 26} \right)\).

Chiều rộng của mảnh đất là: \(26 - x\,\left( m \right)\)

Chiều dài của vườn rau là: \(x - 2\,\,\left( m \right)\)

Chiều rộng của vườn rau là: \(26 - x - 2 = 24 - x\,\,\left( m \right)\)

Do diện tích của vườn rau là \(112{m^2}\) nên ta có phương trình:

\(\left( {x - 2} \right)\left( {24 - x} \right) = 112\)

\(24x - {x^2} - 48 + 2x - 112 = 0\)

\( - {x^2} + 26x - 160 = 0\)

\({x^2} - 26x + 160 = 0\)

\({\left( {x - 13} \right)^2} - 9 = 0\)

\(\left( {x - 13 - 3} \right)\left( {x - 13 + 3} \right) = 0\)

\(\left( {x - 16} \right)\left( {x - 10} \right) = 0\).

Để giải phương trình trên, ta giải hai phương trình sau:

*) \(x - 16 = 0\)                                         

\(x = 16\);                                                      

*) \(x - 10 = 0\)

\(x = 10\).

Vậy chiều dài của mảnh đất là \(16\left( m \right)\)

Chiều rộng của mảnh đất là \(10\left( m \right)\)

Trả lời bởi Hà Quang Minh