Bài 1. Phương trình quy về phương trình bậc nhất một ẩn

HM

Giải các phương trình:

a. \(\frac{1}{x} = \frac{5}{{3\left( {x + 2} \right)}}\);

b. \(\frac{x}{{2x - 1}} = \frac{{x - 2}}{{2x + 5}}\);

c. \(\frac{{5x}}{{x - 2}} = 7 + \frac{{10}}{{x - 2}}\);

d. \(\frac{{{x^2} - 6}}{x} = x + \frac{3}{2}\).

HM
29 tháng 3 2024 lúc 14:53

a. \(\frac{1}{x} = \frac{5}{{3\left( {x + 2} \right)}}\)

Điều kiện xác định: \(x \ne 0\) và \(x \ne  - 2\).

\(\frac{1}{x} = \frac{5}{{3\left( {x + 2} \right)}}\)

\(\begin{array}{l}\frac{{3\left( {x + 2} \right)}}{{3x\left( {x + 2} \right)}} = \frac{5}{{3x\left( {x + 2} \right)}}\\3\left( {x + 2} \right) = 5\\3x + 6 - 5 = 0\\3x + 1 = 0\end{array}\)

\(x = \frac{{ - 1}}{3}\) .

Ta thấy \(x =  - \frac{1}{3}\) thỏa mãn điều kiện xác định của phương trình.

Vậy phương trình đã cho có nghiệm \(x =  - \frac{1}{3}\).

b. \(\frac{x}{{2x - 1}} = \frac{{x - 2}}{{2x + 5}}\)

Điều kiện xác định: \(x \ne \frac{1}{2}\) và \(x \ne  - \frac{5}{2}\).

\(\frac{x}{{2x - 1}} = \frac{{x - 2}}{{2x + 5}}\)

\(\begin{array}{l}\frac{{x\left( {2x + 5} \right)}}{{\left( {2x - 1} \right)\left( {2x + 5} \right)}} = \frac{{\left( {x - 2} \right)\left( {2x - 1} \right)}}{{\left( {2x - 1} \right)\left( {2x + 5} \right)}}\\x\left( {2x + 5} \right) = \left( {x - 2} \right)\left( {2x - 1} \right)\\2{x^2} + 5x = 2{x^2} - x - 4x + 2\\2{x^2} + 5x - 2{x^2} + x + 4x - 2 = 0\\10x - 2 = 0\end{array}\)

\(x = \frac{1}{5}\).

Ta thấy \(x = \frac{1}{5}\) thỏa mãn điều kiện xác định của phương trình.

Vậy \(x = \frac{1}{5}\) là nghiệm của phương trình đã cho.

c. \(\frac{{5x}}{{x - 2}} = 7 + \frac{{10}}{{x - 2}}\)

Điều kiện xác định: \(x \ne 2\).

\(\frac{{5x}}{{x - 2}} = 7 + \frac{{10}}{{x - 2}}\)

\(\begin{array}{l}\frac{{5x}}{{x - 2}} = \frac{{7\left( {x - 2} \right)}}{{x - 2}} + \frac{{10}}{{x - 2}}\\5x = 7x - 14 + 10\\5x - 7x + 14 - 10 = 0\\2x + 4 = 0\end{array}\)

\(x =  - 2\).

Ta thấy \(x =  - 2\) thỏa mãn điều kiện xác định của phương trình.

Vậy \(x =  - 2\) là nghiệm của phương trình đã cho.

d. \(\frac{{{x^2} - 6}}{x} = x + \frac{3}{2}\)

Điều kiện xác định: \(x \ne 0\).

\(\frac{{{x^2} - 6}}{x} = x + \frac{3}{2}\)

\(\begin{array}{l}\frac{{2\left( {{x^2} - 6} \right)}}{{2x}} = \frac{{2{x^2}}}{{2x}} + \frac{{3x}}{{2x}}\\2\left( {{x^2} - 6} \right) = 2{x^2} + 3x\\2{x^2} - 12 = 2{x^2} + 3x\\2{x^2} - 12 - 2{x^2} - 3x = 0\\ - 3x - 12 = 0\end{array}\)

\(x =  - 4\).

Ta thấy \(x =  - 4\) thỏa mãn điều kiện xác định của phương trình.

Vậy \(x =  - 4\) là nghiệm của phương trình đã cho.

Bình luận (0)