§2. Tích vô hướng của hai vectơ

SK
Hướng dẫn giải Thảo luận (1)

a) \(\overrightarrow{BA}\left(4;2\right);\overrightarrow{BC}\left(3;-1\right)\).
\(\dfrac{4}{3}\ne\dfrac{2}{-1}\) nên hai véc tơ \(\overrightarrow{BA};\overrightarrow{BC}\) không cùng phương hay 3 điểm A, B, C không thẳng hàng.
b) \(cos\widehat{ABC}=cos\left(\overrightarrow{BA};\overrightarrow{BC}\right)=\dfrac{4.3+2.\left(-1\right)}{\sqrt{4^2+2^2}.\sqrt{3^2+\left(-1\right)^2}}\)\(=\dfrac{\sqrt{2}}{2}\).
Suy ra: \(\widehat{ABC}=45^o\).

Trả lời bởi Bùi Thị Vân
SK
Hướng dẫn giải Thảo luận (1)

M thuộc trục hoành Ox nên \(M\left(x;0\right)\).
\(\overrightarrow{MA}\left(5-x;5\right);\overrightarrow{MB}\left(3-x;-2\right)\)
\(\overrightarrow{MA}+\overrightarrow{MB}=\left(8-x;3\right)\)
Ta có:
\(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\sqrt{\left(8-x\right)^2+3^2}\ge\sqrt{3^2}=3\).
Vậy giá trị nhỏ nhất của \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\) bằng 3 khi x = 8 hay \(M\left(8;0\right)\).

Trả lời bởi Bùi Thị Vân
SK
Hướng dẫn giải Thảo luận (1)

Muốn chứng minh tứ giác ABCD là tứ giác nội tiếp ta cần chứng minh: \(\widehat{ABC}+\widehat{ADC}=180^o\)\(\Leftrightarrow\)
A B C D
\(\overrightarrow{BA}\left(-1;3\right);\overrightarrow{BC}\left(-2;-4\right)\)
\(cos\widehat{ABC}=cos\left(\overrightarrow{BA};\overrightarrow{BC}\right)\)\(=\dfrac{\left(-1\right).\left(-2\right)+3.\left(-4\right)}{\sqrt{\left(-1\right)^2+3^2}.\sqrt{\left(-2\right)^2+\left(-4\right)^2}}=\dfrac{-\sqrt{2}}{2}\).
Suy ra \(\overrightarrow{ABC}=135^o\).
\(\overrightarrow{DA}\left(4;-2\right);\overrightarrow{DC}\left(3;-9\right)\)
\(cos\widehat{ADC}=\left(\overrightarrow{DA};\overrightarrow{DC}\right)=\dfrac{4.3+\left(-2\right).\left(-9\right)}{\sqrt{4^2+2^2}.\sqrt{\left(3\right)^2+\left(-3\right)^2}}=\dfrac{\sqrt{2}}{2}\)
Suy ra \(\widehat{ADC}=45^o\)
Vậy \(\widehat{ADC}+\widehat{ABC}=135^o+45^o=180^o\).
Vì vậy tứ giác ABCD nội tiếp.

Trả lời bởi Bùi Thị Vân