§1. Phương trình đường thẳng

SK
Hướng dẫn giải Thảo luận (2)

R=\(d_{\left(I,\Delta\right)}=\dfrac{\left|4\times1-3\times5+1\right|}{\sqrt{4^2+3^2}}=2\)

Trả lời bởi Nguyễn Quốc Anh
SK
Hướng dẫn giải Thảo luận (1)

Giả sử: \(d_{\left(M,\Delta_1\right)}=d_{\left(M,\Delta_2\right)}\)

\(\Rightarrow\dfrac{\left|2x+4y+7\right|}{\sqrt{2^2+4^2}}=\dfrac{\left|x-2y-3\right|}{\sqrt{1^2+2^2}}\)

\(\Rightarrow\sqrt{5}\left|2x+4y+7\right|=2\sqrt{5}\left|x-2y-3\right|\)

\(\Rightarrow\left|2x+4y+7\right|=2\left|x-2y-3\right|\)

* \(2x+4y+7=2\left(x-2y-3\right)\)

\(\Rightarrow8y+13=0\)

*\(2x+4y+7=-2\left(x-2y-3\right)\)

\(\Rightarrow4x+1=0\)

Trả lời bởi Nguyễn Quốc Anh
SK
Hướng dẫn giải Thảo luận (1)

lời giải

\(\Delta_1\) //\(\Delta_2\)

Vậy \(\Delta_3\) cách đều phải //\(\Delta_2\)\(\Delta_1\) và giữa \(\Delta_1\&\Delta_2\)

M(0,b)

x=0 =>\(\left\{{}\begin{matrix}\Delta_1=y=1\\\Delta_2\Rightarrow y=-\dfrac{7}{3}\end{matrix}\right.\)

=> b=\(\dfrac{\dfrac{3}{3}-\dfrac{7}{3}}{2}=\dfrac{-2}{3}\)

\(M=\left(0,-\dfrac{2}{3}\right)\)

\(\Delta_3\) phải đi qua M

=>\(\Delta_3\)=5x+3(y+2/3)=5x+3y+2=0

Đáp số: \(\Delta_3\)=5x+3y+2=0

Trả lời bởi ngonhuminh
SK
Hướng dẫn giải Thảo luận (2)

pt đường thẳng (AB)d: (x+1)-3(y-2)=x-3y+7=0

đường thẳng (d1) qua M// AB => d1//d

đảm bảo yêu cầu đầu bài

d1: (x-2)-3(x-5)=x-3y+13=0

Trả lời bởi ngonhuminh