\(\dfrac{1}{x^2+4x+3}+\dfrac{1}{x^2+8x+15}=\dfrac{1}{6}\)
\(\dfrac{1}{\left(x+1\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+5\right)}=\dfrac{1}{6}\) (1)
ĐKXĐ: \(x\ne-1;x\ne-3;x\ne-5\)
(1) \(\Leftrightarrow6\left(x+5\right)+6\left(x+1\right)=\left(x+1\right)\left(x+3\right)\left(x+5\right)\)
\(\Leftrightarrow6x+30+6x+6-\left(x+1\right)\left(x+3\right)\left(x+5\right)=0\)
\(\Leftrightarrow12x+36-\left(x+1\right)\left(x+3\right)\left(x+5\right)=0\)
\(\Leftrightarrow12\left(x+3\right)-\left(x+1\right)\left(x+3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left[12-\left(x+1\right)\left(x+5\right)\right]=0\)
\(\Leftrightarrow\left(x+3\right)\left(12-x^2-6x-5\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(-x^2-6x+7\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-1\right)\left(x+7\right)=0\)
\(\Leftrightarrow x+3=0\) hoặc \(x-1=0\) hoặc \(x+7=0\)
*) \(x+3=0\)
\(x=-3\) (loại)
*) \(x-1=0\)
\(x=1\) (nhận)
*) \(x+7=0\)
\(x=-7\) (nhận)
Vậy \(x=-7;x=1\)