bài 1: cho hình bình hành ABCD có góc A=120 độ và AB=2AD
a, chứng minh rằng : tia phân giác của góc D cắt AB tại E là trung điểm của AB
b, chứng minh AB⊥AC
bài 2: cho △ABC , D ∈ BC. qua D kẻ đường thẳng song song với AB cắt AC ở E >. trên cạnh AB lấy điểm F sao cho AF=DE . gọi I là trung điểm của AD . chứng minh :
a, DF=AE
b, E đối xứng F qua I
bài 1: thực hiện phép tính
a, (\(\frac{x+1}{x-1}-\frac{x-1}{x+1}\)) : (\(\frac{1}{x+1}-\frac{x}{1-x}+\frac{2}{x^2-1}\))
b, \(\frac{2+x}{2-x}:\frac{4x^2}{4-4x+x^2}\) . (\(\frac{2}{2-x}-\frac{4}{8+x^3}.\frac{4-2x+x^2}{2-x}\))
c, ((\(\frac{3}{x-y}+\frac{3x}{x^2+y^2}\)) : \(\frac{2x+y}{x^2+2xy+y^2}\)) . \(\frac{x-y}{3}\)
bài 2: cho biểu thức M = \(\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)
a, tìm ĐKXĐ, rút gọn M
b, tìm x để M có giá trị nguyên
bài 1: thực hiên phép tính
a, \(\frac{x^2}{x^2-x}\)- \(\frac{x^2}{x+1}\)-\(\frac{2x}{x^2-1}\)
b, \(\frac{4x^2-3x+5}{x^3-1}\)- \(\frac{1-2x}{x^2+x+1}\)- \(\frac{6}{x-1}\)
c, \(\frac{5}{2x^2+6x}-\frac{4-3x^2}{x^2-9}-3\)
d, \(\frac{5}{x+1}-\frac{10}{x-x^2-1}-\frac{15}{x^3+1}\)
bài 2: thực hiện phép tính
a, \(\frac{1}{x+1}-\frac{2x}{x-1}+\frac{x+3}{x^2-1}\)
b, \(\frac{2}{2x+1}-\frac{1}{2x-1}+\frac{2}{4x^2-1}\)
c, \(\frac{7}{8x^2-18}+\frac{1}{2x^2+3x}-\frac{1}{4x-6}\)
d, \(\frac{3x^2+5x+14}{x^3+1}+\frac{x-1}{x^2-x+1}-\frac{4}{x+1}\)
bài 1: cho ▲ABC vuông cân tại A trên cạnh AB lấy điểm D , trên cạnh AC lấy điểm E sao cho AD=AE . từ C kẻ đường thẳng vuông góc với BE cắt BA ở I
a, chứng minh : BE=CI
b, qua D và A kể đường thẳng vuông góc với BE cắt BC lần lượt ở M và N . chừng minh MN=NC
bài 2: cho hình thang vuông ABCD , góc A = góc D=90 độ . gọi E là điểm đối xứng với C qua AD, I là giao điểm của BE với AI
a, chứng minh ID là tia phân giác của góc CIF
b, tia CI cắt AB ở F . chứng minh F đối xứng với B qua AD
bài 1: phân tích các đa thức sau thành nhân tử
a, x\(^3\)-x\(^2\)-4x\(^2\)+8x-a
b, 4x\(^2\)-25-(2x-5)(2x+7)
c, x\(^3\)+27+(x+3)(x-9)
d, 4x\(^2\)y\(^2\)-(x\(^2\)+y\(^2\)-z\(^2\))
bài 2: tìm các giá trị nguyên của x để
a, giá trị của biểu thức x\(^3\)+3x\(^2\)+3x-2 chia hết cho đa thức x+1
b, ................................ 2x\(^2\)+x-7 chia hết cho đa thức x-2