a) Ta có: \(GI=IF=\dfrac{GF}{2}\) ( do I là trung điểm GF)
\(\Rightarrow GI=GF=\dfrac{4}{2}=2\left(cm\right)\)
Xét ΔABC có:
I là trung điểm của GF(gt)
IK//FH(gt)
=> K là trung điểm của GH
=> IK là đường trung bình của tam giác ABC
=> \(IK=\dfrac{1}{2}FH=\dfrac{1}{2}.3=\dfrac{3}{2}\)(cm)
Xét tam giác GIK vuông tại I có:
\(GK^2=GI^2+IK^2\)( định lý Pytago)
\(\Rightarrow GK=\sqrt{GI^2+IK^2}=\sqrt{2^2+\left(\dfrac{3}{2}\right)^2}=\dfrac{5}{2}\left(cm\right)\)
b) Xét tam giác KGF có:
\(KI\perp GF\)( KI //FH, FH⊥GF=> KI⊥GF)
KI là đường trung tuyến( I là trung điểm của GF)
=> Tam giác KGF cân tại K
c) Cách 1:
Xét tam giác GCH vuông tại C có
FK là đường trung tuyến ứng với cạnh huyền GH( K là trung điểm của GH)
=> \(FK=\dfrac{1}{2}GH=KH\) \(\Rightarrow\Delta FKH\) cân tại K
Cách 2:
Xét tam giác GFH có:
IK là đường trung bình
=> IK//FH \(\Rightarrow\left\{{}\begin{matrix}\widehat{IKF}=\widehat{KFH}\\\widehat{GKI}=\widehat{KHF}\end{matrix}\right.\)
Mà \(\widehat{GKI}=\widehat{IKF}\) ( do tam giác GKF cân tại K nên KI là tia phân giác \(\widehat{GKF}\))
\(\Rightarrow\widehat{KFH}=\widehat{KHF}\Rightarrow\Delta KFH\) cân tại K