Học tại trường Chưa có thông tin
Đến từ Chưa có thông tin , Chưa có thông tin
Số lượng câu hỏi 0
Số lượng câu trả lời 60
Điểm GP 49
Điểm SP 128

Người theo dõi (32)

AK
HJ
MA

Đang theo dõi (0)


Câu trả lời:

Góc với đường tròn

Câu a:

Xét tứ giác ABCN có: \(\widehat{BAC}=\widehat{CNB}=90^0\)

⇒ ABCN nội tiếp

Câu b:

\(M,C,D,N\in\left(O\right)\)

⇒ MCDN nội tiếp

\(\Rightarrow\widehat{DCM}+\widehat{DNM}=180^0\)

\(\widehat{DNM}+\widehat{BNA}=180^0\left(\text{2 góc kề bù}\right)\)

\(\widehat{DCM}=\widehat{BNA}\)

\(\widehat{ACB}=\widehat{BNA}\) (ABCN nội tiếp)

\(\widehat{DCM}=\widehat{ACB}\)

⇒ CA là tia phân giác của \(\widehat{BCD}\)

Câu c:

Vì ABCN nội tiếp nên \(\widehat{ABC}+\widehat{ANC}=180^0\)

\(\widehat{DNC}+\widehat{ANC}=180^0\left(\text{2 góc kề bù}\right)\)

\(\widehat{ABC}=\widehat{DNC}\)

\(\widehat{DEC}=\widehat{DNC}\left(\text{cùng chắn }\stackrel\frown{DC}\text{ của }\left(O\right)\right)\)

\(\widehat{ABC}=\widehat{DEC}\) tại vị trí đồng vị

⇒ AB // DE

⇒ ABED là hình thang

Câu d:

• Theo gt, ta có: M đx K qua E

mà MK ⊥ BC tại E

⇒ BC là đường trung trực của MK

\(\widehat{BKM}=\widehat{BMK}\)\(\widehat{CKM}=\widehat{CMK}\)

• Tương tự, ta cũng có AB là đường trung trực của IM

\(\widehat{BIA}=\widehat{BMA}\)

• Xét tứ giác BICK có:

\(\widehat{BIC}+\widehat{BKC}=\widehat{BMA}+\widehat{BKM}+\widehat{CKM}=\widehat{BMA}+\widehat{BMK}+\widehat{CMK}=180^0\)

⇒ BICK nội tiếp

• Gọi (O') là tâm đường tròn ngoại tiếp tứ giác BICK

⇒ O' thuộc đường trung trực của BC

⇒ O'B nhỏ nhất khi O' là trung điểm của BC

mà O'B = O'C = O'K

⇒ ΔKBC vuông tại K

\(\widehat{BKC}=\widehat{BMC}=90^0\)

\(M\equiv A\)

Suy ra đường tròn ngoại tiếp ΔBIK có bán kính R nhỏ nhất khi M trùng A.