1. Rút gọn, tính giá trị biểu thức :
\(\left(a^3+3\right)\left(a^2-3a+9\right)-a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)\) tại \(a=2017^{2018}\)
2. Tìm x, biết :
a ) \(x\left(x+3\right)-x^2-11=0\)
b ) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=0\)
3. Chứng minh rằng
a ) \(\left(x+y\right)^2-\left(x+y\right)^2=-4xy\)
b ) \(\left(7n-2\right)^2-\left(2n-7\right)^2\) luôn luôn chia hết cho 9, với mọi n nguyên.
4.
a ) Chứng tỏ rằng \(x^2-4x+2017>0\) với mọi x
b ) Tìm giá trị nhỏ nhất của biểu thức :
\(Q=x^2-6x-11\)