Làm cho hoàn thiện luôn nè
1)ĐK:x>0
pt trở thành: x2+1+3x\(\sqrt{\dfrac{x^2+1}{x}}\)=10x
<=>\(\dfrac{x^2+1}{x}\)+3\(\sqrt{\dfrac{x^2+1}{x}}\)=10(*)
đặt y=\(\sqrt{\dfrac{x^2+1}{x}}\)(y>0)
(*)<=>y2+3y-10=0
<=>(y+5)(y-2)=0
<=>\(\left[{}\begin{matrix}y=-5\\y=2\end{matrix}\right.\)
vậy y =2(y>0)
<=>\(\sqrt{\dfrac{x^2+1}{x}}\)=2<=>x2+1=4x
<=>x2-4x+1=0<=>\(\left[{}\begin{matrix}x=\sqrt{3}+2\\x=2-\sqrt{3}\end{matrix}\right.\)
3) điều phải cm<=>\(\dfrac{1}{a^2\left(b+c\right)}+\dfrac{1}{b^2\left(a+c\right)}+\dfrac{1}{c^2\left(a+b\right)}\ge\dfrac{3}{2}\)đặt x=\(\dfrac{1}{a}\);y=\(\dfrac{1}{b}\);z=\(\dfrac{1}{c}\)
P<=>\(\dfrac{x^2yz}{y+z}+\dfrac{xy^2z}{x+z}+\dfrac{xyz^2}{x+y}\)
=\(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\)(xyz=1)
đến đây ta có bất đẳng thức quen thuộc trên
A=\(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\)
A+3=\(\dfrac{x+y+z}{y+z}+\dfrac{x+y+z}{x+z}+\dfrac{x+y+z}{x+y}\)
=(x+y+z)(\(\dfrac{1}{y+z}+\dfrac{1}{x+z}+\dfrac{1}{x+y}\))(**)
đặt m=x+y;n=y+z;p=x+z
(**)<=>\(\dfrac{m+n+p}{2}\left(\dfrac{1}{m}+\dfrac{1}{n}+\dfrac{1}{p}\right)\ge\dfrac{9}{2}\)(điều suy ra được từ bất đẳng thức cô-si cho 3 số)
=>A\(\ge\)\(\dfrac{3}{2}\)
=>P\(\ge\)\(\dfrac{3}{2}\)